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atggcgcgggatggtatactatacaagcecgtatggttcaaaaagatactttgaattaagaagt
acaataaagttaacttcattagacaaaaagaaaaaacaaggaagaatagtacatagttataa
atacttggagagtgaggtgtaatatgggggcagcectgattttitggggtttcatatatgtagtt
tcaagattagcececattgttgcggeagtagtttacttettatacttattgagaaaaattgcaaa
taaatagaaaaaaagccttgtcaaacgaggctttttttatgecaaaaaatacgacgaatgaaqg
ccatgtgagacaatttggaatagecagacaacaaggaaggtagaacatgttttgaaaaattta
ctgattttcgattattattaacgecttgttaatttaaacatctcettatttttgetaacatata
agtatacaaagggacataaaaaggttaacagegtttgttaaataggaagtatatgaaaatce
tcttttgtgtttctaaatttatttttaaggagtggagaatgttgaaaaaaaataattggtta
caaaatgcagtaatagcaatgctagtgttaattgtaggtctgtgcattaatatgggttcectgg
aacaaaagtacaagctgagagtattcaacgaccaacgcctattaaccaagtttttccagatc
ccggcectagecgaatgcagtgaaacaaaatttagggaagcaaagtgttacagaccttgtatca
caaaaggaactatctggagtacaaaatttcaatggagataatagcaacattcaatctcttge
gggaatgcaatttttcactaatttaaaagaacttcatctatcccataatcaaataagtgacce
ttagtcctttaaaggatctaactaagttagaagagctatctgtgaatagaaacagactgaaa
aatttaaacggaattccaagtgecttgtttatctegettgtttttagataacaacgaactcag
agatactgactcgcttattcatttgaaaaatctagaaatcttatctattcecgtaataataagt
taaaaagtattgtgatgcttggttttttatcaaaactagaggtattagatttgcatggtaat
gaaataacaaatacaggtggactaactagattgaagaaagttaactggatagatttaactgg
tcagaaatgtgtgaatgaaccagtaaaataccaaccagaattgtatataacaaatactgtca
aagacccagatggaagatggatatctccatattacatcagtaatggtgggagttatgtagat
ggttgtgtcctgtgggaattgccagtttatacagatgaagtaagctataagtttagcgaata
tataaacgttggggagactgaggctatatttgatggaacagttacacaacctatcaagaatt
aggacttgtgcacacctgtatactttgagctctegtataatcacgagagetttttaaataty
taagtcttaattatctcttgacaaaaagaacgtttattegtataaggttaccaagagatgaa
gaaactattttatttacaattcaccttgacaccaaaaactccatatgatatagtaaataagy
ttattaaacaagaaagaagaagcaacccgcettcectegectegttaacacgaacgttttecagge
aaaaaattcaaactttcgtcgegtagcttacgegattttgaatgtgegggattgectgaaaag
cageecgtttttttatggectceecgaacgaatgagttageaggecgecagatttgaacagetat
tttctatcttgttgtaacaaaattaagtggaggtggctcaccattagcaaagacatgttggt
aaacgatgggattcgtgcacgtgaagtaagattgatcgaccaagacggtgaacaattaggeqg
tgaagagtaaaatcgatgcgcecttcaaattgctgaaaaggectaatcttgatctagtgettgtt
gctccaacagcgaaaccgccagtagetegta (SEQ ID NO: 37)

Figure 2



U.S. Patent Oct. 11, 2016 Sheet 3 of 24 US 9,463,227 B2

GAATTCatggcgcgggatggtatactatacaagegtatggttcaaaaagatactttgaattaa
gaagtacaataaagttaacttcattagacaaaaagaaaaaacaaggaagaatagtacatagtt
ataaatacttggagagtgaggtgtaatatgggggcagctgatttttggggtttcatatatgta
gtttcaagattagccattgttgcoggcagtagtttacttcettatacttattgagaaaaattgea
aataaatagaaaaaaagcecttgtcaaacgaggcetttttttatgcaaaaaatacgacgaatgaa
gcecatgtgagacaatttggaatagcagacaacaaggaaggtagaacatgttttgaaaaattta
ctgattttcgattattattaacgcttgttaatttaaacatctcettatttttgetaacatataa
gtatacaaagggacataaaaaggttaacagcgtttgttaaataggaagtatatgaaaatecte
ttttgtgtttctaaatttatttttaaggagtggagaGGATCCggacttgtgcacacctgtata
ctttgagctctcgtataatcacgagagectttttaaatatgtaagtcttaattatctcttgaca
aaaagaacgtttattcecgtataaggttaccaagagatgaagaaactattttatttacaattcac
cttgacaccaaaaactccatatgatatagtaaataaggttattaaacaagaaagaagaagcaa
cccgcttetegectegttaacacgaacgttttcaggcaaaaaattcaaactttegtegegtag
cttacgcgattttgaatgtgcgggattgctgaaaagecagececgtttttttatggectecgaac
gaatgagttagcaggccgecagatttgaacagetattttctatettgttgtaacaaaattaagt
ggaggtggctcaccattagcaaagacatgttggtaaacgatgggattcgtgcacgtgaagtaa
gattgatcgaccaagacggtgaacaattaggcgtgaagagtaaaategatgegettcaaattyg
ctgaaaaggctaatcttgatctagtgettgttgetccaacagegaaaccgecagtagetagta
CTGCAG (SEQ ID NO: 38)

Figure 3
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Lm-dd
Lm-ddAactA hiyA
(N-T-19 a2 and SN R vEN
GT28)

Lanes
1: Control (Lm-dd)

2: Lm-dd AactA-colony
ho. 1

3 : Lm-dd AactA-colony
no. 2

PCRusingoligo’s1/2 PCRusingoligo’s3/ 4

Figure 4



U.S. Patent Oct. 11, 2016 Sheet 5 of 24 US 9,463,227 B2

gegecaaatcattggttgattggteageatgtetgtgtecgtggatcgegagatgegcgaataagaageattaaagatcctgacaaatat
aalcaagcggcelealalgaaagallacgaalcegceliccaclcacagaggaaggcgaclggggeggagiicallalaalaglgglalcee
gaataaagcagectataatactatcactaaacttggaaaagaaaaaacagaacagcetttattttcgegecttaaagtactatttaacgaaaa
aatcccagtttaccgatgegaaaaaagegettcascasgeagegaaagatitatatggtgaagatgctictuaaaaagttgetgaagett
gggaagcagttggeottaactgattaacaaatgttagagaaaaattaattctccaagtgatattcttaaaataattcatgaatattttttcttata
ttagctaattaagaagataactaactgctaatccaattittaacggaacaaattagtgaaaatgaaggecgaattttectigttctaaanaggt
tglallageglalcacgaggagggaglalaagig geattaaacagatitutgegrgegatgatg grg gitttcattactgecaattgeatt
acgaitaacccegacglegacceatacgacgliaatictigeaaigiiagelaliggegigiicietiiuggggegilatcaaaaliall
caaifaagaaaaaataattaaaaacacagascgaaagaagaagtgagetgaatgatatgaaattcasanaggtgettctagotatgty
cligalcgeaaglgliclaglelilcegglaacgatlaaaageaaalgeclgliglgatgaalactiacaaacaccegeagelecgealgala
ttgacagcaaattaccacataaacttagttggteccgeggataacccgacaaatactgacgtaaatacgeactattggetttttaaacaage
ggaaaaaatactagctanagatgtaaatcatatgegagetaatttaatgaatgaacttaaanaatticgataaacaaatagetcaaggaata
lalgalgcggalcalaaaaalccalatlalgalactaglacatttttalclcattitialaatcelgatagagalaalactlatligeegggluige
taatgcgaaaataacaggagceaaagtatttcaatcaatcggtgactgattaccgagaagggaa (SEQ ID NO: 41)

Figure 5
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LISTERIA-BASED ADJUVANTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a National Phase Application of PCT
International Application No. PCT/US12/28757, Interna-
tional Filing Date Mar. 12, 2012, which claims priority to
U.S. Provisional Patent application No. 61/451,651, filed
Mar. 11, 2011. International Application No. PCT/US12/
28757 is also a continuation of U.S. application Ser. No.
13/210,696, filed Aug. 16, 2011 now U.S. Pat. No. 9,017,
660, and is a continuation of U.S. application Ser. No.
13/290,783, filed Nov. 7, 2011, each of which is incorpo-
rated by reference herein in its entirety.

FIELD OF INVENTION

This invention provides methods and compositions for
using Listeria monocytogenes as an adjuvant for enhancing
immune responses in a subject.

BACKGROUND OF THE INVENTION

Adjuvants have extensive use in immunotherapy. The
majority of cellular based immunotherapies administer adju-
vants prior to giving antigen specific treatment. Typically
these antigens include GM-CSF, IL-1, QP-100, Keyhole
Limpet Cynanin, and others. These adjuvants are typically
administered systemically via IV, IM, ID or similar routes.

Listeria monocytogenes (Lm) is an intracellular pathogen
that primarily infects antigen presenting cells and has
adapted for life in the cytoplasm of these cells. Listeria
monocytogenes and a protein it produces named listeriolysin
O (LLO) have strong adjuvant properties, that unlike the
majority of adjuvants used for cellular based immunothera-
pies, can be administered after providing an antigen specific
treatment.

A method of rapidly elevating a subject’s immune
response to any antigen is needed in order to decrease
disease frequency in the subject and mortality resulting
thereof. The present invention provides methods of elevat-
ing an immune response in subjects such as human adults
and children by taking advantage of the adjuvant properties
provided by live Lm vaccines that secrete non-hemolytic
LLO or a truncated ActA.

Further, the same method is provided to reconstitute the
immune response or facilitate the recovery of an immune
response to normal or approximately normal levels in sub-
jects that have undergone cytotoxic treatment as a result of
cancer.

SUMMARY OF THE INVENTION

In one embodiment the invention relates to a method of
reconstituting an immune response in a subject, the method
comprising the step of administering a live attenuated List-
eria vaccine strain to the subject.

In one embodiment the invention relates to a method of
reconstituting an immune response in a subject, the method
comprising the step of administering a live attenuated List-
eria vaccine strain to the subject, the Listeria strain com-
prising a nucleic acid molecule, wherein the nucleic acid
molecule comprises a first open reading frame encoding a
PEST-containing polypeptide

In one embodiment, the invention relates to a method of
facilitating recovery of immune responses after cytotoxic
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treatments in a subject, the method comprising administer-
ing a live attenuated Listeria vaccine strain to the subject

In one embodiment, the invention relates to a method of
facilitating recovery of immune responses after cytotoxic
treatments in a subject, the method comprising administer-
ing a live attenuated Listeria vaccine strain to the subject In
another embodiment the Listeria strain comprising a nucleic
acid molecule, wherein the nucleic acid molecule comprises
a first open reading frame encoding a PEST-containing
polypeptide.

In one embodiment, the invention relates to a method of
improving the immunogenicity of a vaccine, said method
comprising the step of co-administering the vaccine and a
Listeria-based adjuvant to a subject, wherein the Listeria-
based adjuvant enhances the immunogenicity of said vac-
cine, thereby improving the immunogenicity of the vaccine.

In one embodiment, the invention relates to a method of
enhancing an immune response against a disease in an
antigen-independent manner in a subject, said method com-
prising administering a Listeria-based adjuvant to the sub-
ject.

Other features and advantages of the present invention
will become apparent from the following detailed descrip-
tion examples and figures. It should be understood, however,
that the detailed description and the specific examples while
indicating preferred embodiments of the invention are given
by way of illustration only, since various changes and
modifications within the spirit and scope of the invention
will become apparent to those skilled in the art from this
detailed description.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a schematic map of E. coli-Listeria shuttle
plasmids pGGSS (above) and pTV3 (below). CAT(-): E.
coli chloramphenicol transferase; CAT(+): Listeria chloram-
phenicol transferase; On Lm: replication origin for Listeria;
Ori Ec: pl5 origin of replication for E. coli; prfA: Listeria
pathogenicity regulating factor A; LLO: C-terminally trun-
cated listeriolysin O, including its promoter; E7: HPV E7;
p60-dal; expression cassette of p60 promoter and Listeria
dal gene. Selected restriction sites are also depicted.

FIG. 2 shows the DNA sequences present upstream and
downstream of the inlC region on the genome of Listeria
strain EGD. DNA-up (red), inlC gene (blue) and DNA-down
(black).

FIG. 3 shows the sequence of DNA that is cloned in the
temperature sensitive plasmid, pKSV7 to create inl C dele-
tion mutant. The restriction enzyme sites used for cloning of
these regions are indicated in caps and underlined.
GAATTC-EcoRI, GGATCC-BamHI and CTGCAg-Pstl.
The EcoRI-Pstl insert is cloned in the vector, pKSV7.

FIG. 4 shows a Schematic representation of the Lm-dd
and Lm-ddD actA strains. The gel showing the size of PCR
products using oligo’s %2 and oligo’s ¥4 obtained using e
chromosomal DNA of the strains, Lm-dd and Lm-ddAactA
as template.

FIG. 5 shows the DNA sequence present upstream and
downstream of the actA gene in the Listeria chromosome.
The region in italics contains the residual actA sequence
element that is present in the LmddAactA strain. The under-
lined sequence gtcgac represent the restriction site of Xhol,
which is the junction between the N-T and C-T region of
actA.

FIG. 6 depicts tumor regression in response to adminis-
tration of Lm vaccine strains (A). Circles represent naive
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mice, inverted triangles represent mice administered Lmdd-
TV3, and crosses represent mice administered Lm-LLOE7.

FIG. 7 shows a decrease in MDSCs and Tregs in tumors.
The number of MDSCs (right-hand panel) and Tregs (left-
hand panel) following Lm vaccination (LmddAPSA and
LmddAE7).

FIG. 8 shows suppressor assay data demonstrating that
monocytic MDSCs from TPSA23 tumors are less suppres-
sive after Listeria vaccination. This change in the suppres-
sive ability of the MDSCs is not antigen specific as the same
decrease in suppression is seen with PSA-antigen specific T
cells and also with non-specifically stimulated T cells. The
No MDSC group shows the lack of division of the responder
T cells when they are left unstimulated and the last group
shows the division of stimulated cells with no MDSCs added
to suppress division. Left-hand panels show individual cell
division cycles for each group. Right-hand panels show
pooled division cycles.

FIG. 9 shows suppressor assay data demonstrating that
Listeria has no effect on splenic monocytic MDSCs and they
are only suppressive in an antigen-specific manner. The No
MDSC group shows the lack of division of the responder T
cells when they are left unstimulated and the last group
shows the division of stimulated cells with no MDSCs added
to suppress division. Left-hand panels show individual cell
division cycles for each group. Right-hand panels show
pooled division cycles.

FIG. 10 shows suppressor assay data demonstrating that
granulocytic MDSCs from tumors have a reduced ability to
suppress T cells after Listeria vaccination. This change in
the suppressive ability of the MDSCs is not antigen specific
as the same decrease in suppression is seen with PSA-
antigen specific T cells and also with non-specifically stimu-
lated T cells. The No MDSC group shows the lack of
division of the responder T cells when they are left unstimu-
lated and the last group shows the division of stimulated
cells with no MDSCs added to suppress division. Left-hand
panels show individual cell division cycles for each group.
Right-hand panels show pooled division cycles.

FIG. 11 shows suppressor assay data demonstrating that
Listeria has no effect on splenic granulocytic MDSCs and
they are only suppressive in an antigen-specific manner. The
No MDSC group shows the lack of division of the responder
T cells when they are left unstimulated and the last group
shows the division of stimulated cells with no MDSCs added
to suppress division. Left-hand panels show individual cell
division cycles for each group. Right-hand panels show
pooled division cycles.

FIG. 12 shows suppressor assay data demonstrating that
Tregs from tumors are still suppressive. There is a slight
decrease in the suppressive ability of Tregs in a non-antigen
specific manner, in this tumor model. The No Treg group
shows the lack of division of the responder T cells when they
are left unstimulated and the last group shows the division
of stimulated cells with no Tregs added to suppress division.
Left-hand panels show individual cell division cycles for
each group. Right-hand panels show pooled division cycles.

FIG. 13 shows suppressor assay data demonstrating that
splenic Tregs are still suppressive. The No Treg group shows
the lack of division of the responder T cells when they are
left unstimulated and the last group shows the division of
stimulated cells with no Tregs added to suppress division.
Left-hand panels show individual cell division cycles for
each group. Right-hand panels show pooled division cycles.

FIG. 14 shows suppressor assay data demonstrating that
conventional CD4+ T cells have no effect on cell division
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regardless if whether they are found in the tumors or spleens
of mice. Left-hand and Right-hand panels show pooled
division cycles.

FIG. 15 shows suppressor assay data demonstrating that
monocytic MDSCs from 4T1 tumors have decreased sup-
pressive ability after Listeria vaccination. This change in the
suppressive ability of the MDSCs is not antigen specific as
the same decrease in suppression is seen with Her2/neu-
antigen specific T cells and also with non-specifically stimu-
lated T cells. The No MDSC group shows the lack of
division of the responder T cells when they are left unstimu-
lated and the last group shows the division of stimulated
cells with no MDSCs added to suppress division. Left-hand
panels show individual cell division cycles for each group.
Right-hand panels show pooled division cycles.

FIG. 16 shows suppressor assay data demonstrating that
there is no Listeria-specific effect on splenic monocytic
MDSCs. The No MDSC group shows the lack of division of
the responder T cells when they are left unstimulated and the
last group shows the division of stimulated cells with no
MDSCs added to suppress division. Left-hand panels show
individual cell division cycles for each group. Right-hand
panels show pooled division cycles.

FIG. 17 shows suppressor assay data demonstrating that
granulocytic MDSCs from 4T1 tumors have decreased sup-
pressive ability after Listeria vaccination. This change in the
suppressive ability of the MDSCs is not antigen specific as
the same decrease in suppression is seen with Her2/neu-
antigen specific T cells and also with non-specifically stimu-
lated T cells. The No MDSC group shows the lack of
division of the responder T cells when they are left unstimu-
lated and the last group shows the division of stimulated
cells with no MDSCs added to suppress division. Left-hand
panels show individual cell division cycles for each group.
Right-hand panels show pooled division cycles.

FIG. 18 shows suppressor assay data demonstrating that
there is no Listeria-specific effect on splenic granulocytic
MDSCs. The No MDSC group shows the lack of division of
the responder T cells when they are left unstimulated and the
last group shows the division of stimulated cells with no
MDSCs added to suppress division. Left-hand panels show
individual cell division cycles for each group. Right-hand
panels show pooled division cycles.

FIG. 19 shows suppressor assay data demonstrating that
decrease in the suppressive ability of Tregs from 4T1 tumors
after Listeria vaccination. This decrease is not antigen
specific, as the change in Treg suppressive ability is seen
with both Her2/neu-specific and non-specific responder T
cells. Left-hand panels show individual cell division cycles
for each group. Right-hand panels show pooled division
cycles.

FIG. 20 shows suppressor assay data demonstrating that
there is no Listeria-specific effect on splenic Tregs. The
responder T cells are all capable of dividing, regardless of
the whether or not they are antigen specific. Left-hand
panels show individual cell division cycles for each group.
Right-hand panels show pooled division cycles.

FIG. 21 shows IFN-y production is reduced in S. mansoni
infected mice.

FIG. 22 shows IL-4 levels are increased in mice with
chronic schistosomiasis.

FIG. 23 shows IL-10 production is increased in mice
infected with S. mansoni.

FIG. 24 shows Schistosome infection does not alter the
antigen-specific vaccine responses toward immunodominant
CTL and helper epitopes.



US 9,463,227 B2

5
DETAILED DESCRIPTION OF THE
INVENTION

A novel and heretofore unexplored use is to create a live
attenuated Listeria vaccine strain devoid of exogenous anti-
gen

A novel and heretofore unexplored use is to create a live
attenuated Listeria vaccine strain devoid of antigen that
enables the Listeria to secrete only the non-hemolytic form
of LLO (Lm-LLO) or a truncated ActA (Lm-ActA) as an
adjuvant. The invention provided herein addresses the first
live adjuvant.

In one embodiment, provided herein is a method of
reconstituting an immune response in a subject, the method
comprising the step of administering a live attenuated List-
eria vaccine strain to the subject. In another embodiment the
Listeria strain comprises a nucleic acid molecule, wherein
the nucleic acid molecule comprises a first open reading
frame encoding a PEST-containing polypeptide.

In one embodiment, the Listeria over expresses said
PEST-containing polypeptide. In another embodiment, the
PEST-containing polypeptide is a non-hemolytic LLO pro-
tein or immunogenic fragment thereof, an ActA protein or
truncated fragment thereof, or a PEST amino acid sequence.

In one embodiment, provided herein is a method of
facilitating recovery of immune responses after cytotoxic
treatments in a subject, the method comprising administer-
ing a live attenuated Listeria vaccine strain to the subject. In
another embodiment, the Listeria strain comprises a nucleic
acid molecule, wherein the nucleic acid molecule comprises
a first open reading frame encoding a PEST-containing
polypeptide.

In one embodiment, provided herein is a method of
improving the immunogenicity of a vaccine, the method
comprising the step of co-administering the vaccine and a
Listeria-based adjuvant to a subject, wherein the Listeria-
based adjuvant enhances the immunogenicity of the vaccine,
thereby improving the immunogenicity of the vaccine.

In one embodiment, provided herein is a method of
enhancing an immune response against a disease in an
antigen-independent manner in a subject, the method com-
prising administering a Listeria-based adjuvant to the sub-
ject.

In one embodiment, provided herein is a composition and
method for bioengineering a live Lm bacterium that infects
specific cells, including; antigen processing cells (APC),
Kupfter cells, vascular endothelium, bone marrow, and
others; as well as structures such as solid tumors and spleen.
In another embodiment, the live Lm adjuvant then synthe-
sizes and secretes a modified LLO fragment in situ where the
adjuvant is needed and used to stimulate immune responses.
In another embodiment the live Lm synthesizes ActA. In
another embodiment, unlike previous adjuvants, the instant
invention administers the ability to make an adjuvant in situ
and does not involve the systemic administration of an
immune adjuvant.

In one embodiment, provided herein is a method of
eliciting an adult-level enhanced immune response in neo-
nate subjects, the method comprising the step of adminis-
tering a recombinant Listeria vaccine strain to the subject. In
another embodiment, the Listeria strain comprising a
nucleic acid molecule, wherein the nucleic acid molecule
comprises a first open reading frame encoding a non-
hemolytic listeriolysin O (LLO) or ActA, wherein the
nucleic acid molecule further comprises a second open
reading frame encoding a metabolic enzyme, wherein the
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metabolic enzyme complements an endogenous gene that is
lacking in the chromosome of the recombinant Listeria
strain.

In one embodiment, provided herein a method of facili-
tating recovery of immune responses after cytotoxic treat-
ments in a subject, the method comprising administering a
recombinant Listeria vaccine strain to the subject. In another
embodiment, the Listeria strain comprising a nucleic acid
molecule, wherein the nucleic acid molecule comprises a
first open reading frame encoding a non-hemolytic listeri-
olysin O or ActA, wherein the nucleic acid molecule further
comprises a second open reading frame encoding a meta-
bolic enzyme, wherein the metabolic enzyme complements
an endogenous gene that is lacking in the chromosome of
said recombinant Listeria strain. In another embodiment, the
subject is an adult human subject.

The ability of an adjuvant to increase the immune
response to an antigen is typically manifested by a signifi-
cant increase in immune-mediated protection. For example,
an increase in humoral immunity is typically manifested by
a significant increase in the titer of antibodies raised to the
antigen, and an increase in T-cell activity is typically mani-
fested in increased cell proliferation, increased cytokine
production and/or antigen specific cytolytic activity. An
adjuvant may also alter an immune response, for example,
by enabling a Thl response against a background of a
persistent Th2 phenotype.

In one embodiment, this invention provides methods and
compositions for preventing disease, treating disease and
vaccinating a human subject.

In another embodiment, the present invention is directed
to enhancing immune response of a human, a neonate, or a
human that has been subjected to cytotoxic treatment as a
result of cancer.

In one embodiment, a Listeria-based adjuvant refers to a
live-attenuated Listeria vaccine strain. In another embodi-
ment, the Listeria-based adjuvant is an Lm-LLO or an
Lm-ActA. In another embodiment, Lm-LLO expresses a
non-hemolytic LLO. In another embodiment, Lm-ActA
expresses a truncated ActA protein. In another embodiment,
Lm-LLO or Lm-ActA can be used alone, or in combination
with any therapy in which an adjuvant is appropriate, and
may have utility in settings where no adjuvant has been
commonly used, such as chemotherapy or radiotherapy.

In another embodiment, the Listeria strain provided
herein further comprises a third open reading frame encod-
ing a metabolic enzyme.

In one embodiment, the metabolic enzyme is an amino
acid metabolism enzyme. In another embodiment, the meta-
bolic enzyme encoded by the second open reading frame is
an alanine racemase enzyme or a D-amino acid transferase
enzyme. In another embodiment, the metabolic enzyme
encoded by the third open reading frame is an alanine
racemase enzyme or a D-amino acid transferase enzyme. In
another embodiment, the metabolic enzyme is encoded dal
gene, where in another embodiment the dal gene is from B.
subtilis. In another embodiment, the metabolic enzyme is
encoded by the dat gene.

In another embodiment, the recombinant Listeria is an
attenuated auxotrophic strain.

In one embodiment the attenuated strain is Lmdd. In
another embodiment the attenuated strain is Lmdda. In
another embodiment, the attenuated strain is LmAPrfA. In
another embodiment, the attenuated strain is LmAPIcB. In
another embodiment, the attenuated strain is LmAPIcA. In
another embodiment, the attenuated strain is LmddAAinIC.
In another embodiment, the LmddAAinlC mutant strain is
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created using EGD strain of Lm, which is different from the
background strain 10403S, the parent strain for Lm dal dat
actA (LmddA). In another embodiment, this strain exerts a
strong adjuvant effect which is an inherent property of
Listeria-based vaccines. In another embodiment, this strain
is constructed from the EGD Listeria backbone.

In another embodiment, the strain used in the invention is
a Listeria strain that expresses a non-hemolytic LLO. In yet
another embodiment the Listeria strain is a prfA mutant,
ActA mutant, a plcB deletion mutant, or a double mutant
lacking both plcA and plcB. All these Listeria strain are
contemplated for use in the methods provided herein. Each
possibility represents a separate embodiment of the present
invention.

In one embodiment, the LmddAAinlC mutant strain is
safe for use in humans and induces high levels of innate
immune responses. In one embodiment, the inlC deletion
mutant generates an enhanced level of innate immune
responses that are not antigen specific.

In one embodiment, translocation of Listeria to adjacent
cells is inhibited by two separate mechanisms, deletion of
actA and inlC genes, both of which are involved in the
process, thereby resulting in unexpectedly high levels of
attenuation with increased immunogenicity and utility as a
vaccine backbone. In another embodiment, translocation of
Listeria to adjacent cells is inhibited by two separate mecha-
nisms, deletion of actA or inlC genes, both of which are
involved in the process, thereby resulting in unexpectedly
high levels of attenuation with increased immunogenicity
and utility as a vaccine backbone.

Internalins are associated with increased virulence and
their presence is associated with increased immunogenicity
of Listeria, however, in the present invention, excising the
inlC gene increases immunogenicity of the Listeria vaccine
vector provided herein. In another embodiment, the present
invention provides the novelty that the inlC genes are
excised from a vector in which actA is deleted, thereby
removing both, the ability to form actin flagella necessary
for movement through the host cell membrane and into the
neighboring cell, and the ability for transmembrane passage.
Therefore, the combination of these two deletions yields the
surprising result of decreased virulence and increased immu-
nogenicity of a Listeria vaccine vector over a wild-type
Listeria strain or a single mutant strain.

In another embodiment, the nucleic acid molecule pro-
vided herein is integrated into the Listeria genome. In
another embodiment, the nucleic acid molecule is in a
plasmid in the recombinant Listeria vaccine strain also
provided herein. In another embodiment, the plasmid pro-
vided herein is stably maintained in the recombinant Listeria
vaccine strain in the absence of antibiotic selection. In
another embodiment, the plasmid does not confer antibiotic
resistance upon said recombinant Listeria.

In one embodiment, the recombinant Listeria strain pro-
vided herein is attenuated. In another embodiment, the
recombinant Listeria lacks the ActA virulence gene. In
another embodiment, the recombinant Listeria lacks the
PrfA virulence gene.

In another embodiment, the recombinant Listeria vaccine
strain comprises an adjuvant, wherein the adjuvant is list-
eriolysin O. In another embodiment, the recombinant List-
eria vaccine strain comprises an adjuvant, wherein the
adjuvant is ActA.

In one embodiment, the Listeria vaccine strain is Lmd-
dAinlC142 strain. LmddAinlC142 is based on a Listeria
vaccine vector which is attenuated due to the deletion of inlC
gene and retains the plasmid for PSA expression in vivo and
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in vitro by complementation of dal gene. In another embodi-
ment, L mddAinlC142 exerts strong and antigen specific
anti-tumor responses with ability to break tolerance toward
a heterologous antigen in a subject. In another embodiment,
the LmddAinlC142 strain is highly attenuated and has a
better safety profile than previous Listeria vaccine genera-
tion, as it is more rapidly cleared from the spleens of the
immunized mice. In another embodiment, LmddAinlC142
strain is highly immunogenic, able to break tolerance toward
a heterologous antigen and prevents tumor formation in a
subject.

In another embodiment, the methods provided herein
further provide methods of overcoming or “breaking” tol-
erance toward a heterologous antigen that is a self-antigen.
Such antigens may be aberrantly expressed by various
tumors which are subject to treatment or prophylaxis under
the scope of the present invention by using the methods and
compositions provided herein.

In one embodiment, recombinant attenuated, antibiotic-
free Listerias expressing listeriolysin O in combination with
other therapeutic modalities are useful for enhancing an
immune response, and for preventing, and treating a cancer
or solid tumors. In another embodiment, recombinant
attenuated, antibiotic-free Listerias expressing listeriolysin
O alone, or in combination with other therapeutics are useful
for preventing, and treating infectious diseases in a subject.
In another embodiment, the subject is a neonate, a child, or
an adult.

In one embodiment, recombinant attenuated, antibiotic-
free Listerias expressing ActA in combination with other
therapeutic modalities are useful for enhancing an immune
response, and for preventing, and treating a cancer or solid
tumors. In another embodiment, recombinant attenuated,
antibiotic-free Listerias expressing ActA alone, or in com-
bination with other therapeutics are useful for preventing,
and treating infectious diseases in a subject. In another
embodiment, the subject is a neonate, a child, or an adult.

In one embodiment, the immune response induced by the
methods and compositions provided herein is a therapeutic
one. In another embodiment it is a prophylactic immune
response. In another embodiment, it is an enhanced immune
response over methods available in the art for inducing an
immune response in a subject afflicted with the conditions
provided herein. In another embodiment, the immune
response leads to clearance of the disease provided herein
that is afflicting the subject.

It is to be understood that the methods of the present
invention may be used to treat any infectious disease, which
in one embodiment, is bacterial, viral, microbial, microor-
ganism, pathogenic, or combination thereof, infection. In
another embodiment, the methods of the present invention
are for inhibiting or suppressing a bacterial, viral, microbial,
microorganism, pathogenic, or combination thereof, infec-
tion in a subject. In another embodiment, the present inven-
tion provides a method of eliciting a cytotoxic T-cell
response against a bacterial, viral, microbial, microorgan-
ism, pathogenic, or combination thereof, infection in a
subject. In another embodiment, the present invention pro-
vides a method of inducing a Th1 immune response against
a bacterial, viral, microbial, microorganism, pathogenic, or
combination thereof, infection in a Thl unresponsive sub-
ject. In one embodiment, the infection is viral, which in one
embodiment, is HIV. In one embodiment, the infection is
bacterial, which in one embodiment, is mycobacteria, which
in one embodiment, is tuberculosis. In one embodiment, the
infection is eukaryotic, which in one embodiment, is plas-
modium, which in one embodiment, is malaria.
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In one embodiment, provided herein is a method of
inducing a Thl immune response in a Thl unresponsive
subject having a concomitant helminth infection, where in
another embodiment, the method comprises using a Listeria
vaccine vector.

In another embodiment, provided herein is a method of
improving the immunogenicity of a vaccine, the method
comprising co-administering the vaccine and a Listeria-
based adjuvant to a subject, wherein the Listeria-based
adjuvant enhances the immunogenicity of the vaccine,
thereby improving the immunogenicity of the vaccine. In
one embodiment, the method enables the treatment of a
disease for which said vaccine is specific against.

In one embodiment, provided herein is a method of
enhancing an immune response against a disease in an
antigen-independent manner, the method comprising admin-
istering a Listeria-based adjuvant to a subject.

In another embodiment, the Listeria-based adjuvant is an
LLO-expressing Listeria strain or an LLO protein or a
non-hemolytic fragment thereof. In another embodiment,
the Listeria-based adjuvant is an ActA-expressing Listeria
strain or an ActA protein or a truncated fragment thereof. In
another embodiment, Listeria-based adjuvant is used alone
or is combined with an additional adjuvant. In another
embodiment, the additional adjuvant is a non-nucleic acid
adjuvant including aluminum adjuvant, Freund’s adjuvant,
MPL, emulsion, GM-CSF, QS21, SBAS2, CpG-containing
oligonucleotide, a nucleotide molecule encoding an
immune-stimulating cytokine, the adjuvant is or comprises
a bacterial mitogen, or a bacterial toxin. In another embodi-
ment, the LLO protein or hemolytic fragment thereof is
admixed with or chemically coupled to said vaccine.

In one embodiment, the vaccine is selected from the group
consisting of hepatitis B virus blood-derived vaccine, hepa-
titis B virus genetic engineering protein vaccines, HBV virus
vector vaccine, hepatitis B virus bacterium vector vaccine,
hepatitis B virus transgenic plant vaccine, rabies virus
blood-derived vaccine, rabies virus genetic engineering pro-
tein vaccines, rabies virus vector vaccine, rabies virus bac-
terium vector vaccine, and rabies virus transgenic plant
vaccine, and the DNA vaccine is selected from the group
consisting of hepatitis B virus DNA vaccine and rabies DNA
vaccine.

In another embodiment, the Listeria-based adjuvant is
used alone or is combined with an additional adjuvant.

In another embodiment, the adjuvant of the present inven-
tion is co-administered with an additional adjuvant. In
another embodiment, the additional adjuvant utilized in
methods and compositions of the present invention is, in
another embodiment, a granulocyte/macrophage colony-
stimulating factor (GM-CSF) protein. In another embodi-
ment, the adjuvant comprises a GM-CSF protein. In another
embodiment, the adjuvant is a nucleotide molecule encoding
GM-CSF. In another embodiment, the adjuvant comprises a
nucleotide molecule encoding GM-CSF. In another embodi-
ment, the adjuvant is saponin QS21. In another embodiment,
the adjuvant comprises saponin QS21. In another embodi-
ment, the adjuvant is monophosphoryl lipid A. In another
embodiment, the adjuvant comprises monophosphoryl lipid
A. In another embodiment, the adjuvant is SBAS2. In
another embodiment, the adjuvant comprises SBAS2. In
another embodiment, the adjuvant is an unmethylated CpG-
containing oligonucleotide. In another embodiment, the
adjuvant comprises an unmethylated CpG-containing oligo-
nucleotide. In another embodiment, the adjuvant is an
immune-stimulating cytokine. In another embodiment, the
adjuvant comprises an immune-stimulating cytokine. In
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another embodiment, the adjuvant is a nucleotide molecule
encoding an immune-stimulating cytokine. In another
embodiment, the adjuvant comprises a nucleotide molecule
encoding an immune-stimulating cytokine. In another
embodiment, the adjuvant is or comprises a quill glycoside.
In another embodiment, the adjuvant is or comprises a
bacterial mitogen. In another embodiment, the adjuvant is or
comprises a bacterial toxin. In another embodiment, the
adjuvant is or comprises any other adjuvant known in the art.
Each possibility represents a separate embodiment of the
present invention.

In one embodiment, provided herein is a nucleic acid
molecule that encodes the adjuvant of the present invention.
In another embodiment, the nucleic acid molecule is used to
transform the Listeria in order to arrive at a recombinant
Listeria. In another embodiment, the nucleic acid provided
herein used to transform Listeria lacks a virulence gene. In
another embodiment, the nucleic acid molecule integrated
into the Listeria genome carries a non-functional virulence
gene. In another embodiment, the virulence gene is mutated
in the recombinant Listeria. In yet another embodiment, the
nucleic acid molecule is used to inactivate the endogenous
gene present in the Listeria genome. In yet another embodi-
ment, the virulence gene is an ActA gene, an inlC gene or a
PrfA gene. As will be understood by a skilled artisan, the
virulence gene can be any gene known in the art to be
associated with virulence in the recombinant Listeria.

In one embodiment, the metabolic gene, the virulence
gene, etc. is lacking in a chromosome of the Listeria strain.
In another embodiment, the metabolic gene, virulence gene,
etc. is lacking in the chromosome and in any episomal
genetic element of the Listeria strain. In another embodi-
ment, the metabolic gene, virulence gene, etc. is lacking in
the genome of the virulence strain. In one embodiment, the
virulence gene is mutated in the chromosome. In another
embodiment, the virulence gene is deleted from the chro-
mosome. Each possibility represents a separate embodiment
of the present invention.

In another embodiment, the nucleic acids and plasmids
provided herein do not confer antibiotic resistance upon the
recombinant Listeria.

“Nucleic acid molecule” refers, in another embodiment,
to a plasmid. In another embodiment, the term refers to an
integration vector. In another embodiment, the term refers to
a plasmid comprising an integration vector. In another
embodiment, the integration vector is a site-specific integra-
tion vector. In another embodiment, a nucleic acid molecule
of methods and compositions of the present invention are
composed of any type of nucleotide known in the art. Each
possibility represents a separate embodiment of the present
invention.

“Metabolic enzyme” refers, in another embodiment, to an
enzyme involved in synthesis of a nutrient required by the
host bacteria. In another embodiment, the term refers to an
enzyme required for synthesis of a nutrient required by the
host bacteria. In another embodiment, the term refers to an
enzyme involved in synthesis of a nutrient utilized by the
host bacteria. In another embodiment, the term refers to an
enzyme involved in synthesis of a nutrient required for
sustained growth of the host bacteria. In another embodi-
ment, the enzyme is required for synthesis of the nutrient.
Each possibility represents a separate embodiment of the
present invention.

“Stably maintained” refers, in another embodiment, to
maintenance of a nucleic acid molecule or plasmid in the
absence of selection (e.g. antibiotic selection) for 10 gen-
erations, without detectable loss. In another embodiment,
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the period is 15 generations. In another embodiment, the
period is 20 generations. In another embodiment, the period
is 25 generations. In another embodiment, the period is 30
generations. In another embodiment, the period is 40 gen-
erations. In another embodiment, the period is 50 genera-
tions. In another embodiment, the period is 60 generations.

In another embodiment, the period is 80 generations. In
another embodiment, the period is 100 generations. In
another embodiment, the period is 150 generations. In
another embodiment, the period is 200 generations. In
another embodiment, the period is 300 generations. In
another embodiment, the period is 500 generations. In
another embodiment, the period is more than generations. In

another embodiment, the nucleic acid molecule or plasmid
is maintained stably in vitro (e.g. in culture). In another
embodiment, the nucleic acid molecule or plasmid is main-
tained stably in vivo. In another embodiment, the nucleic
acid molecule or plasmid is maintained stably both in vitro
and in vitro. Each possibility represents a separate embodi-
ment of the present invention.

In another embodiment, the metabolic enzyme of the
methods and compositions provided herein is an amino acid
metabolism enzyme, where, in another embodiment, the
metabolic enzyme is an alanine racemase enzyme. In
another embodiment, the metabolic enzyme is a D-amino
acid transferase enzyme. In another embodiment, the meta-
bolic enzyme catalyzes a formation of an amino acid used
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for a cell wall synthesis in the recombinant Listeria strain,
where in another embodiment the metabolic enzyme is an
alanine racemase enzyme.

In another embodiment, the gene encoding the metabolic
enzyme is expressed under the control of the Listeria p60
promoter. In another embodiment, the inlA (encodes inter-
nalin) promoter is used. In another embodiment, the hly
promoter is used. In another embodiment, the ActA pro-
moter is used. In another embodiment, the integrase gene is
expressed under the control of any other gram positive
promoter. In another embodiment, the gene encoding the
metabolic enzyme is expressed under the control of any
other promoter that functions in Listeria. The skilled artisan
will appreciate that other promoters or polycistronic expres-
sion cassettes may be used to drive the expression of the
gene. Each possibility represents a separate embodiment of
the present invention.

The LLO utilized in the methods and compositions pro-
vided herein is, in one embodiment, a Listeria LLO. In one
embodiment, the Listeria from which the LLO is derived is
Listeria monocytogenes (Lm). In another embodiment, the
Listeria is Listeria ivanovii. In another embodiment, the
Listeria is Listeria welshimeri. In another embodiment, the
Listeria is Listeria seeligeri.

In one embodiment, the LLO protein is encoded by the
following nucleic acid sequence set forth in (SEQ ID NO:
D).

(SEQ ID NO: 1)

atgaaaaaaataatgctagtttttattacacttatattagttagtctaccaattgegcaacaaactgaagcaaaggatgcatctgcattcaataa

agaaaattcaatttcatccatggcaccaccagcatetecgectgecaagtectaagacgccaategaaaagaaacacgeggatgaaateg

ataagtatatacaaggattggattacaataaaaacaatgtattagtataccacggagatgcagtgacaaatgtgccgcecaagaaaaggtta

caaagatggaaatgaatatattgttgtggagaaaaagaagaaatccatcaatcaaaataatgcagacattcaagttgtgaatgcaatttega

gectaacctatccaggtgcetetegtaaaagegaatteggaattagtagaaaatcaaccagatgttetecctgtaaaacgtgattcattaacac

tcagcattgatttgccaggtatgactaatcaagacaataaaatagttgtaaaaaatgeccactaaatcaaacgttaacaacgcagtaaatacat

tagtggaaagatggaatgaaaaatatgctcaagettatccaaatgtaagtgcaaaaattgattatgatgacgaaatggcttacagtgaatca

caattaattgcgaaatttggtacagcatttaaagectgtaaataatagcttgaatgtaaactteggegcaatcagtgaagggaaaatgcaaga

agaagtcattagttttaaacaaatttactataacgtgaatgttaatgaacctacaagaccttcecagattttteggcaaagetgttactaaagage

agttgcaagcgettggagtgaatgcagaaaatectectgeatatatctcaagtgtggegtatggeegtcaagtttatttgaaattatcaacta

attcccatagtactaaagtaaaagetgettttgatgetgecgtaageggaaaatetgtetcaggtgatgtagaactaacaaatatcatcaaaa

attcttecttcaaagecgtaatttacggaggttecgecaaaagatgaagttcaaatcatcgacggcaaccteggagacttacgegatattttga

aaaaaggcgctacttttaatcgagaaacaccaggagtteccattgettatacaacaaacttectaaaagacaatgaattagetgttattaaaa

acaactcagaatatattgaaacaacttcaaaagcttatacagatggaaaaattaacatcgatcactctggaggatacgttgetcaattcaaca

tttettgggatgaagtaaattatgatetegag.

55

In another embodiment, the LLO protein has the sequence
SEQ ID NO: 2

(SEQ ID NO: 2)

MKKIMLVFITLILVSLPIAQQTEAKDASAFNIKE

NSISSMAPPASPPASPKTPIEKKHADEIDI KYIQG

LDYNKNNVLVYHGDAVTNVPPRKGYKDGNETYTI

VVEKKKKSINQNNADIQVVNAISSLTYPGALYVEK
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-continued
VKRDSLTLSIDL

NAVNTLVERWDNE
PNVSAKIDYDDEMAYSESQLIAKFGT
SLNVNFGAISEGKMQEEVISFKQIYVYY

TRPSRFFGKAVTKEQLQALGVNAENTP

The first 25 amino acids of the proprotein corresponding to
this sequence are the signal sequence and are cleaved from
LLO when it is secreted by the bacterium. Thus, in this
embodiment, the full length active LLO protein is 504
residues long. In another embodiment, the LLO protein has
a sequence set forth in GenBank Accession No. DQO054588,
DQO054589, AY878649, U25452, or U25452. In another
embodiment, the LLO protein is a variant of an LLO protein.
In another embodiment, the LLO protein is a homologue of
an LLO protein. Each possibility represents a separate
embodiment of the present invention.

In another embodiment, “truncated LLO” or “tLLO”
refers to a fragment of LLO that comprises the PEST-like
domain. In another embodiment, the terms refer to an LLO
fragment that does not contain the activation domain at the
amino terminus and does not include cystine 484. In another
embodiment, the LLO fragment consists of a PEST
sequence. In another embodiment, the LLO fragment com-
prises a PEST sequence. In another embodiment, the LLLO
fragment consists of about the first 400 to 441 amino acids
of the 529 amino acid full-length LLLO protein. In another
embodiment, the LLO fragment is a non-hemolytic form of
the LLO protein.

In one embodiment, the LLO fragment consists of about
residues 1-25. In another embodiment, the LLO fragment
consists of about residues 1-50. In another embodiment, the
LLO fragment consists of about residues 1-75. In another
embodiment, the LLO fragment consists of about residues
1-100. In another embodiment, the LL.O fragment consists
of about residues 1-125. In another embodiment, the LLO
fragment consists of about residues 1-150. In another
embodiment, the LLO fragment consists of about residues
1175. In another embodiment, the LLO fragment consists of
about residues 1-200. In another embodiment, the LLO
fragment consists of about residues 1-225. In another
embodiment, the LLO fragment consists of about residues
1-250. In another embodiment, the LL.O fragment consists
of about residues 1-275. In another embodiment, the LLO
fragment consists of about residues 1-300. In another
embodiment, the LLO fragment consists of about residues
1-325. In another embodiment, the LL.O fragment consists
of about residues 1-350. In another embodiment, the LLO
fragment consists of about residues 1-375. In another
embodiment, the LLO fragment consists of about residues
1-400. In another embodiment, the LL.O fragment consists
of about residues 1-425. Each possibility represents a sepa-
rate embodiment of the present invention.
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In another embodiment, provided herein, is a vaccine
comprising a recombinant form of Listeria of the present
invention.

In another embodiment, provided herein, is a culture of a
recombinant form of Listeria of the present invention.

In one embodiment, the live attenuated Listeria or recom-
binant Listeria provided herein expresses an ActA protein or
a fragment thereof. In another embodiment of the methods
and compositions of the present invention, a fragment of an
ActA protein is fused to the heterologous antigen or a
fragment thereof also provided herein. In another embodi-
ment, the fragment of an ActA protein has the sequence:

MRAMMYVVFITANCITINPDIIFAATDSEDSSLNT-
DEWEEEKTEEQPSEVNTGP
RYETAREVSSRDIKELEKSNKVRNTNKADLIAMLKE-
KAEKGPNINNNNSEQTENAAI ~ NEEASGADRPAIQ-
VERRHPGLPSDSAAEIKKRRKAIASSDSELESLTYPD-
KPTKVNKK
KVAKESVADASESDLDSSMQSADESSPQPLKAN-
QQPFFPKVFKKIKDAGKWVRDKID ENPEVK-
KAIVDKSAGLIDQLLTKKKSEEVNASDFPPPPTDEEL -
RLALPETPMLLGFNA
PATSEPSSFEFPPPPTDEELRLALPETPMLLGFNAPAT-
SEPSSFEFPPPPTEDELEIIRETA SSLDSSFTRGDLASL-
RNAINRHSQNFSDFPPIPTEEELNGRGGRP (SEQ 1D
No: 3). In another embodiment, an ActA AA sequence of
methods and compositions of the present invention com-
prises the sequence set forth in SEQ ID No: 3. In another
embodiment, the ActA AA sequence is a homologue of SEQ
ID No: 3. In another embodiment, the ActA AA sequence is
a variant of SEQ ID No: 3. In another embodiment, the ActA
AA sequence is a fragment of SEQ ID No: 3. In another
embodiment, the ActA AA sequence is an isoform of SEQ
ID No: 3. Each possibility represents a separate embodiment
of the present invention.

In another embodiment, the ActA fragment is encoded by
a recombinant nucleotide comprising the sequence:
ATGCGTGCGATGATGGTGGTTTTCATTACTGCCAAT-
TGCATTACGATTAACCCCGA CATAATATTTGCAGC-
GACAGATAGCGAAGATTCTAGTCTAAACACAGAT-
GAATGG
GAAGAAGAAAAAACAGAAGAGCAACCAAGCGAG-
GTAAATACGGGACCAAGATA CGAAACTGCACGT-
GAAGTAAGTTCACGTGATATTAAAGAACTA-
GAAAAATCGAA
TAAAGTGAGAAATACGAACAAAGCAGAC-
CTAATAGCAATGTTGAAAGAAAAAGC
AGAAAAAGGTCCAAATATCAATAATAACAACAGT-
GAACAAACTGAGAATGCGGC TATAAATGAAGAG-
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GCTTCAGGAGCCGACCGACCAGCTATACAAGTG-
GAGCGTCG
TCATCCAGGATTGCCATCGGATAGCGCAGCG-
GAAATTAAAAAAAGAAGGAAAGC CATAGCAT-
CATCGGATAGTGAGCTTGAAAGCCTTACTTATCCG-
GATAAACCAACA
AAAGTAAATAAGAAAAAAGTGGCGAAAGAGTCA-
GTTGCGGATGCTTCTGAAAGT GACTTAGATTCTAG-
CATGCAGTCAGCAGATGAGTCTTCACCACAACCTT-
TAAAAG
CAAACCAACAACCATTTTTCCCTAAAGTATT-
TAAAAAAATAAAAGATGCGGGGA AATGGGTACGT-
GATAAAATCGACGAAAATCCTGAAG-
TAAAGAAAGCGATTGTTG
ATAAAAGTGCAGGGTTAATTGACCAATTATTAAC-
CAAAAAGAAAAGTGAAGAGG TAAATGCTTCG-
GACTTCCCGCCACCACCTACGGATGAAGAGT-
TAAGACTTGCTTT
GCCAGAGACACCAATGCTTCTTGGTTTTAATGCTC-
CTGCTACATCAGAACCGAGC  TCATTCGAATTTC-
CACCACCACCTACGGATGAAGAGTTAAGACTT-
GCTTTGCCAG
AGACGCCAATGCTTCTTGGTTTTAATGCTCCTGC-
TACATCGGAACCGAGCTCGTTC GAATTTCCACCGC-
CTCCAACAGAAGATGAACTAGAAATCATC-
CGGGAAACAGCA
TCCTCGCTAGATTCTAGTTTTACAAGAGGGGATT-
TAGCTAGTTTGAGAAATGCTAT TAATCGCCATAGT-
CAAAATTTCTCTGATTTCCCACCAATCCCAACA-
GAAGAAGAG TTGAA CGGGAGAGGCGGTAGACCA
(SEQ ID NO: 4). In another embodiment, the recombinant
nucleotide has the sequence set forth in SEQ ID NO: 4. In
another embodiment, an ActA-encoding nucleotide of meth-
ods and compositions of the present invention comprises the
sequence set forth in SEQ ID No: 4. In another embodiment,
the ActA-encoding nucleotide is a homologue of SEQ ID
No: 4. In another embodiment, the ActA-encoding nucleo-
tide is a variant of SEQ ID No: 4. In another embodiment,
the ActA-encoding nucleotide is a fragment of SEQ ID No:
4. In another embodiment, the ActA-encoding nucleotide is
an isoform of SEQ ID No: 4. Each possibility represents a
separate embodiment of the present invention.

In another embodiment, the ActA fragment is encoded by
a recombinant nucleotide comprising the sequence:

Tttatcacgtacccatttccccgeatcttttatttttttaaatactttagggaaaa
atggtttttgatttgcttttaaaggtigtggtotagactcgtctgetgactgeatgcta-
gaa tctaagtcactttcagaagcatccacaactgactctttcgecacttttctettattt-
gcttt  tgttggtttatctggataagtaaggctttcaagetcactatccgacgacge-
tatggcttttc
ttetttttttaatttecgetgegetatecgatgacagacctggatgacgacgetecact-
tge agagttggtcggtegactectgaagecteticatttatagecacatttcetgttt-
gctcace  gttgttattattgttattcggacctttctetgcettttgetttcaacattgetatt-
aggtctg
ctttgttcgtatttttcactttattcgattittctagticctcaatatcacgtgaacttact
tcacgtgcagtttcgtatettggteecgtatttacctegettggctgetcttctgttttttc
ttetteccattcatetgtgtttagactggaatcttegetatctgtegetgcaaatattatgt
cggggttaatcgtaatgcagttggcagtaatgaaaactaccatcatcgeacgeat
(SEQ ID NO: 5). In another embodiment, the recombinant
nucleotide has the sequence set forth in SEQ ID NO: 5. In
another embodiment, an ActA-encoding nucleotide of meth-
ods and compositions of the present invention comprises the
sequence set forth in SEQ ID No: 5. In another embodiment,
the ActA-encoding nucleotide is a homologue of SEQ ID
No: 5. In another embodiment, the ActA-encoding nucleo-
tide is a variant of SEQ ID No: 5. In another embodiment,
the ActA-encoding nucleotide is a fragment of SEQ ID No:
5. In another embodiment, the ActA-encoding nucleotide is
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an isoform of SEQ ID No: 5. Each possibility represents a
separate embodiment of the present invention.

In another embodiment of methods and compositions of
the present invention, a fragment of an ActA protein is fused
to a heterologous antigen or fragment thereof. In another
embodiment, the fragment of an ActA protein has the
sequence as set forth in Genbank Accession No. AAF04762.
In another embodiment, an ActA AA sequence of methods
and compositions of the present invention comprises the
sequence set forth in Genbank Accession No. AAF04762. In
another embodiment, the ActA AA sequence is a homologue
of Genbank Accession No. AAF04762. In another embodi-
ment, the ActA AA sequence is a variant of Genbank
Accession No. AAF04762. In another embodiment, the
ActA AA sequence is a fragment of Genbank Accession No.
AAF04762. In another embodiment, the ActA AA sequence
is an isoform of Genbank Accession No. AAF04762. Each
possibility represents a separate embodiment of the present
invention.

An N-terminal fragment of an ActA protein utilized in
methods and compositions of the present invention has, in
another embodiment, the sequence set forth in SEQ 1D NO:
6: MRAMMYVVFITANCITINPDIIFAATDSEDSSLNT-
DEWEEEKTEEQPSEVNTGPRYETA
REVSSRDIKELEKSNKVRNTNKADLIAMLKEKAEK-
GPNINNNNSEQTENAAINEEAS GADRPAIQVERRH-
PGLPSDSAAEIKKRRKATASSDSELESLTYPDKPTK-
VNKKKVAKE
SVADASESDLDSSMQSADESSPQPLKANQQPFFPK-
VFKKIKDAGKWVRDKIDENPEV KKAIVDKSA-
GLIDQLLTKKKSEEVNASDFPPPPTDEELRLALPETP-
MLLGFNAPATSEP
SSFEFPPPPTDEELRLALPETPMLLGFNAPATSEPSS-
FEFPPPPTEDELEIIRETASSLDSS FTRGDLASLR-
NAINRHSQNFSDFPPIPTEEELNGRGGRP. In another
embodiment, the ActA fragment comprises the sequence set
forth in SEQ ID NO: 6. In another embodiment, the ActA
fragment is any other ActA fragment known in the art. Each
possibility represents a separate embodiment of the present
invention.

In another embodiment, the recombinant nucleotide
encoding a fragment of an ActA protein comprises the
sequence set forth in SEQ ID NO: 7 Atgcgtgcgatgatggtg-
gttttcattactgecaattgeattacgattaacccegaca  taatatttgcagegaca-
gatagcgaagattcta gictaaacacagatgaatggoaagaagaaaaaaca-
gaagag caaccaagcgaggtaaatacgggaccaagatacgaaactgeacg
tgaagtaagttcacgtgatattaaagaactagaaaaatcgaataaagtgagaa
atacgaacaaagcagacctaatagcaatgttgaaag aaaaagcagaa
aaaggtccaaatatcaataataacaacagtgaacaaactgagaatgeggcta
taaatgaagaggcttcaggagecg accgaccagcetatacaagtggage gtegt-
catccaggattgccatcggatagegcageggaaattaaaaaaagaaggaaagc-

catag catcatcggatagtgagcttgaaagecttacttatccggataaaccaa
caaaagtaaataagaaaaaagtggcgaaagagtcagitgcg gatgatct-
gaaagtgacttagattctagcatgcagtcagcagatgagtatcacc  acaacctt-

taaaagcaaaccaacaaccattatcce
gegggoaaatggotacgtgat aaaatcgacgaaaatcctgaagtaaaga
aagcgattgttgata aaagtgcagggttaattgaccaattattaac-
caaaaagaaaagtga gaggtaaatgatcggacttccegecaccacctacggat-
gaa gagttaagacttgattgccagagacaccaatgatcttggttttaatgacct
gctacatcagaaccgagcetcattcgaatttccaccacca cctacggatga agagt-
taagacttgattgccagagacgccaatgatcttggttttaatgacctget  acatcg-
gaaccgagacgttcga  atttccaccgectccaacagaagatgaactagaaat-
catccg  ggaaacagcatcctcgctagattctagtittacaagaggggatttaget
agtttgagaaatgctattaatcgecatagtcaaaatttactgatttcccaccaatc

ccaacagaagaagagttgaacgggagaggeggt agacca. In another
embodiment, the recombinant nucleotide has the sequence
set forth in SEQ ID NO: 7. In another embodiment, the

taaagtatttaaaaaaataaaagat-
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recombinant nucleotide comprises any other sequence that
encodes a fragment of an ActA protein. Each possibility
represents a separate embodiment of the present invention.

In another embodiment, the ActA fragment is encoded by
a recombinant nucleotide comprising the sequence as set
forth in Genbank Accession No. AF103807. In another
embodiment, the recombinant nucleotide has the sequence
set forth in Genbank Accession No. AF103807. In another
embodiment, an ActA-encoding nucleotide of methods and
compositions of the present invention comprises the
sequence set forth in Genbank Accession No. AF103807. In
another embodiment, the ActA-encoding nucleotide is a
homologue of Genbank Accession No. AF103807. In
another embodiment, the ActA-encoding nucleotide is a
variant of Genbank Accession No. AF103807. In another
embodiment, the ActA-encoding nucleotide is a fragment of
Genbank Accession No. AF103807. In another embodiment,
the ActA-encoding nucleotide is an isoform of Genbank
Accession No. AF103807. Each possibility represents a
separate embodiment of the present invention.

In another embodiment, the ActA fragment is any other
ActA fragment known in the art. In another embodiment, a
recombinant nucleotide of the present invention comprises
any other sequence that encodes a fragment of an ActA
protein. In another embodiment, the recombinant nucleotide
comprises any other sequence that encodes an entire ActA
protein. Each possibility represents a separate embodiment
of the present invention.

In one embodiment, the live attenuated Listeria or recom-
binant Listeria provided herein expresses a PEST sequence
peptide. In another embodiment of methods and composi-
tions of the present invention, a PEST AA sequence is fused
to the heterologous antigen or fragment. In another embodi-
ment, the PEST AA sequence is KENSISSMAPPASPPASP-
KTPIEKKHADEIDK (SEQ ID NO: 8). In another embodi-
ment, the PEST sequence is KENSISSMAPPASPPASPK
(SEQ ID No: 9).

In another embodiment, the PEST AA sequence is a PEST
sequence from a Listeria ActA protein. In another embodi-
ment, the PEST sequence is KTEEQPSEVNTGPR (SEQ ID
NO: 10), KASVTDTSEGDLDSSMQSADESTPQPLK
(SEQ ID NO: 11), KNEEVNASDFPPPPTDEELR (SEQ 1D
NO: 12), or RGGIPTSEEFSSLNSGDFTDDENSETTEEE-
IDR (SEQ ID NO: 13). In another embodiment, the PEST-
like sequence is a variant of the PEST sequence described
hereinabove, which in one embodiment, is KESVVDASES-
DLDSSMQSADESTPQPLK (SEQ ID NO: 14, KSEEVN-
ASDFPPPPTDEELR (SEQ ID NO: 15), or RGGRPTSEEF-
SSLNSGDFTDDENSETTEEEIDR (SEQ ID NO: 16), as
would be understood by a skilled artisan. In another embodi-
ment, the PEST-like sequence is from Listeria seeligeri
cytolysin, encoded by the lso gene. In another embodiment,
the PEST sequence is RSEVTISPAETPESPPATP (SEQ ID
NO: 17). In another embodiment, the PEST sequence is from
Streptolysin O protein of Streprococcus sp. In another
embodiment, the PEST sequence is from Streprococcus
pyogenes Streptolysin O, e.g. KQNTASTETTTTNEQPK
(SEQ ID NO: 18) at AA 35-51. In another embodiment, the
PEST-like sequence is from Streprococcus equisimilis Strep-
tolysin O, e.g. KQNTANTETTTTINEQPK (SEQ ID NO:
19) at AA 38-54. In another embodiment, the PEST-like
sequence has a sequence selected from SEQ ID NO: 8-16.
In another embodiment, the PEST-like sequence has a
sequence selected from SEQ ID NO: 8-19. In another
embodiment, the PEST sequence is another PEST AA
sequence derived from a prokaryotic organism.
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Identification of PEST sequences is well known in the art,
and is described, for example in Rogers S et al (Amino acid
sequences common to rapidly degraded proteins: the PEST
hypothesis. Science 1986; 234(4774):364-8) and Rech-
steiner M et al (PEST sequences and regulation by proteoly-
sis. Trends Biochem Sci 1996; 21(7):267-71). “PEST
sequence” refers, in another embodiment, to a region rich in
proline (P), glutamic acid (E), serine (S), and threonine (T)
residues. In another embodiment, the PEST sequence is
flanked by one or more clusters containing several positively
charged amino acids. In another embodiment, the PEST
sequence mediates rapid intracellular degradation of pro-
teins containing it. In another embodiment, the PEST
sequence fits an algorithm disclosed in Rogers et al. In
another embodiment, the PEST sequence fits an algorithm
disclosed in Rechsteiner et al. In another embodiment, the
PEST sequence contains one or more internal phosphory-
lation sites, and phosphorylation at these sites precedes
protein degradation.

In one embodiment, PEST sequences of prokaryotic
organisms are identified in accordance with methods such as
described by, for example Rechsteiner and Rogers (1996,
Trends Biochem. Sci. 21:267-271) for Lm and in Rogers S
et al (Science 1986; 234(4774):364-8). Alternatively, PEST
AA sequences from other prokaryotic organisms can also be
identified based on this method. Other prokaryotic organ-
isms wherein PEST AA sequences would be expected to
include, but are not limited to, other Listeria species. In one
embodiment, the PEST sequence fits an algorithm disclosed
in Rogers et al. In another embodiment, the PEST sequence
fits an algorithm disclosed in Rechsteiner et al. In another
embodiment, the PEST sequence is identified using the
PEST-find program.

In another embodiment, identification of PEST motifs is
achieved by an initial scan for positively charged AA R, H,
and K within the specified protein sequence. All AA between
the positively charged flanks are counted and only those
motifs are considered further, which contain a number of AA
equal to or higher than the window-size parameter. In
another embodiment, a PEST-like sequence must contain at
least 1 P, 1 DorE, and at least 1 S or T.

In another embodiment, the quality of a PEST motif is
refined by means of a scoring parameter based on the local
enrichment of critical AA as well as the motifs hydropho-
bicity. Enrichment of D, E, P, S and T is expressed in mass
percent (w/w) and corrected for 1 equivalent of D or E, 1 of
P and 1 of S or T. In another embodiment, calculation of
hydrophobicity follows in principle the method of J. Kyte
and R. F. Doolittle (Kyte, J and Dootlittle, R F. J. Mol. Biol.
157, 105 (1982).

In another embodiment, a potential PEST motif’s hydro-
phobicity is calculated as the sum over the products of mole
percent and hydrophobicity index for each AA species. The
desired PEST score is obtained as combination of local
enrichment term and hydrophobicity term as expressed by
the following equation:

PEST score=0.55* DEPST-0.5*hydrophobicity index.

In another embodiment, “PEST sequence”, “PEST-like
sequence” or “PEST-like sequence peptide” refers to a
peptide having a score of at least +5, using the above
algorithm. In another embodiment, the term refers to a
peptide having a score of at least 6. In another embodiment,
the peptide has a score of at least 7. In another embodiment,
the score is at least 8. In another embodiment, the score is
at least 9. In another embodiment, the score is at least 10. In
another embodiment, the score is at least 11. In another
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embodiment, the score is at least 12. In another embodiment,
the score is at least 13. In another embodiment, the score is
at least 14. In another embodiment, the score is at least 15.
In another embodiment, the score is at least 16. In another
embodiment, the score is at least 17. In another embodiment,
the score is at least 18. In another embodiment, the score is
at least 19. In another embodiment, the score is at least 20.
In another embodiment, the score is at least 21. In another
embodiment, the score is at least 22. In another embodiment,
the score is at least 22. In another embodiment, the score is
at least 24. In another embodiment, the score is at least 24.
In another embodiment, the score is at least 25. In another
embodiment, the score is at least 26. In another embodiment,
the score is at least 27. In another embodiment, the score is
at least 28. In another embodiment, the score is at least 29.
In another embodiment, the score is at least 30. In another
embodiment, the score is at least 32. In another embodiment,
the score is at least 35. In another embodiment, the score is
at least 38. In another embodiment, the score is at least 40.
In another embodiment, the score is at least 45. Each
possibility represents a separate embodiment of the present
invention.

In another embodiment, the PEST sequence is identified
using any other method or algorithm known in the art, e.g
the CaSPredictor (Garay-Malpartida H M, Occhiucci J M,
Alves J, Belizario J E. Bioinformatics. 2005 June; 21 Suppl
1:1169-76). In another embodiment, the following method is
used:

A PEST index is calculated for each stretch of appropriate
length (e.g. a 30-35 AA stretch) by assigning a value of 1 to
the AA Ser, Thr, Pro, Glu, Asp, Asn, or Gln. The coefficient
value (CV) for each of the PEST residue is 1 and for each
of the other AA (non-PEST) is 0.

Each method for identifying a PEST-like sequence rep-
resents a separate embodiment of the present invention.

In another embodiment, the PEST sequence is any other
PEST sequence known in the art. Each PEST sequence and
type thereof represents a separate embodiment of the present
invention.

“Fusion to a PEST sequence” refers, in another embodi-
ment, to fusion to a protein fragment comprising a PEST
sequence. In another embodiment, the term includes cases
wherein the protein fragment comprises surrounding
sequence other than the PEST sequence. In another embodi-
ment, the protein fragment consists of the PEST sequence.
Thus, in another embodiment, “fusion” refers to two pep-
tides or protein fragments either linked together at their
respective ends or embedded one within the other. Each
possibility represents a separate embodiment of the present
invention.

In another embodiment, provided herein is a vaccine
comprising a recombinant form of Listeria of the present
invention.

In another embodiment, provided herein, is a culture of a
recombinant form of Listeria of the present invention.

In another embodiment, the Listeria of methods and
compositions of the present invention is Listeria monocy-
togenes. In another embodiment, the Listeria is Listeria
ivanovii. In another embodiment, the Listeria is Listeria
welshimeri. In another embodiment, the Listeria is Listeria
seeligeri. BEach type of Listeria represents a separate
embodiment of the present invention.

In one embodiment, attenuated Listeria strains, such as
Lm delta-actA mutant (Brundage et al, 1993, Proc. Natl.
Acad. Sci., USA, 90:11890-11894), L. monocytogenes delta-
plc A (Camilli et al, 1991, J. Exp. Med., 173:751-754), or
delta-ActA, delta INL-b (Brockstedt et 5 al, 2004, PNAS,
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101:13832-13837) are used in the present invention. In
another embodiment, attenuated Listeria strains are con-
structed by introducing one or more attenuating mutations,
as will be understood by one of average skill in the art when
equipped with the disclosure herein. Examples of such
strains include, but are not limited to Listeria strains auxo-
trophic for aromatic amino acids (Alexander et al, 1993,
Infection and Immunity 10 61:2245-2248) and mutant for
the formation of lipoteichoic acids (Abachin et al, 2002,
Mol. Microbiol. 43:1-14) and those attenuated by a lack of
a virulence gene (see examples herein).

In another embodiment, the nucleic acid molecule of
methods and compositions of the present invention is oper-
ably linked to a promoter/regulatory sequence. In another
embodiment, the first open reading frame of methods and
compositions of the present invention is operably linked to
a promoter/regulatory sequence. In another embodiment, the
second open reading frame of methods and compositions of
the present invention is operably linked to a promoter/
regulatory sequence. In another embodiment, each of the
open reading frames are operably linked to a promoter/
regulatory sequence. Each possibility represents a separate
embodiment of the present invention.

The skilled artisan, when equipped with the present
disclosure and the methods provided herein, will readily
understand that different transcriptional promoters, termina-
tors, carrier vectors or specific gene sequences (e.g. those in
commercially available cloning vectors) can be used suc-
cessfully in methods and compositions of the present inven-
tion. As is contemplated in the present invention, these
functionalities are provided in, for example, the commer-
cially available vectors known as the pUC series. In another
embodiment, non-essential DNA sequences (e.g. antibiotic
resistance genes) are removed. Each possibility represents a
separate embodiment of the present invention. In another
embodiment, a commercially available plasmid is used in
the present invention. Such plasmids are available from a
variety of sources, for example, Invitrogen (La Jolla, Calif.),
Stratagene (La Jolla, Calif.), Clontech (Palo Alto, Calif.), or
can be constructed using methods well known in the art.

Another embodiment is a plasmid such as pCR2.1 (Invit-
rogen, La Jolla, Calif.), which is a prokaryotic expression
vector with a prokaryotic origin of replication and promoter/
regulatory elements to facilitate expression in a prokaryotic
organism. In another embodiment, extraneous nucleotide
sequences are removed to decrease the size of the plasmid
and increase the size of the cassette that can be placed
therein.

Such methods are well known in the art, and are described
in, for example, Sambrook et al. (1989, Molecular Cloning:
A Laboratory Manual, Cold Spring Harbor Laboratory
Press, New York) and Ausubei et al. (1997, Current Proto-
cols in Molecular Biology, Green & Wiley, New York).

Antibiotic resistance genes are used in the conventional
selection and cloning processes commonly employed in
molecular biology and vaccine preparation. Antibiotic resis-
tance genes contemplated in the present invention include,
but are not limited to, gene products that confer resistance to
ampicillin, penicillin, methicillin, streptomycin, erythromy-
cin, kanamycin, tetracycline, cloramphenicol (CAT), neo-
mycin, hygromycin, gentamicin and others well known in
the art. Each gene represents a separate embodiment of the
present invention.

Methods for transforming bacteria are well known in the
art, and include calcium-chloride competent cell-based
methods, electroporation methods, bacteriophage-mediated
transduction, chemical, and physical transformation tech-
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niques (de Boer et al, 1989, Cell 56:641-649; Miller et al,
1995, FASEB 1., 9:190-199; Sambrook et al. 1989, Molecu-
lar Cloning: A Laboratory Manual, Cold Spring Harbor
Laboratory, New York; Ausubel et al., 1997, Current Pro-
tocols in Molecular Biology, John Wiley & Sons, New York;
Gerhardt et al., eds., 1994, Methods for General and
Molecular Bacteriology, American Society for Microbiol-
ogy, Washington, D.C.; Miller, 1992, A Short Course in
Bacterial Genetics, Cold Spring Harbor Laboratory Press,
Cold Spring Harbor, N.Y.) In another embodiment, the
Listeria vaccine strain of the present invention is trans-
formed by electroporation. Each method represents a sepa-
rate embodiment of the present invention.

In another embodiment, conjugation is used to introduce
genetic material and/or plasmids into bacteria. Methods for
conjugation are well known in the art, and are described, for
example, in Nikodinovic J et al. (A second generation
snp-derived Escherichia coli-Streptomyces shuttle expres-
sion vector that is generally transferable by conjugation.
Plasmid. 2006 November; 56(3):223-7) and Auchtung ] M
et al (Regulation of a Bacillus subtilis mobile genetic
element by intercellular signaling and the global DNA
damage response. Proc Natl Acad Sci USA. 2005 Aug. 30;
102 (35):12554-9). Each method represents a separate
embodiment of the present invention.

“Transforming,” in one embodiment, is used identically
with the term “transfecting,” and refers to engineering a
bacterial cell to take up a plasmid or other heterologous
DNA molecule. In another embodiment, “transforming”
refers to engineering a bacterial cell to express a gene of a
plasmid or other heterologous DNA molecule. Each possi-
bility represents a separate embodiment of the present
invention.

Plasmids and other expression vectors useful in the pres-
ent invention are described elsewhere herein, and can
include such features as a promoter/regulatory sequence, an
origin of replication for gram negative and gram positive
bacteria, an isolated nucleic acid encoding a fusion protein
and an isolated nucleic acid encoding an amino acid metabo-
lism gene. Further, an isolated nucleic acid encoding a
fusion protein and an amino acid metabolism gene will have
a promoter suitable for driving expression of such an iso-
lated nucleic acid. Promoters useful for driving expression
in a bacterial system are well known in the art, and include
bacteriophage lambda, the bla promoter of the beta-lacta-
mase gene of pBR322; and the CAT promoter of the
chloramphenicol acetyl transferase gene of pPBR325. Further
examples of prokaryotic promoters include the major right
and left promoters of 5 bacteriophage lambda (PL and PR),
the trp, recA, lacZ, lad, and gal promoters of E. coli, the
alpha-amylase (Ulmanen et al, 1985. J. Bacteriol. 162:176-
182) and the S28-specific promoters of B. subtilis (Gilman
et al, 1984 Gene 32:11-20), the promoters of the bacterio-
phages of Bacillus (Gryczan, 1982, In: The Molecular
Biology of the Bacilli, Academic Press, Inc., New York), and
Streptomyces promoters (Ward et al, 1986, Mol. Gen. Genet.
203:468-478). Additional prokaryotic promoters contem-
plated in the present invention are reviewed in, for example,
Glick (1987, J. Ind. Microbiol. 1:277-282); Cenatiempo,
(1986, Biochimie, 68:505-516); and Gottesman, (1984, Ann.
Rev. Genet. 18:415-442). Further examples of promoter/
regulatory elements contemplated in the present invention
include, but are not limited to the Listerial prfA promoter,
the Listerial hly promoter, the Listerial p60 promoter and the
Listerial ActA promoter (GenBank Acc. No. NC_003210) or
fragments thereof.
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In one embodiment, DNA encoding the recombinant
non-hemolytic LLO is produced using DNA amplification
methods, for example polymerase chain reaction (PCR).
First, the segments of the native DNA on either side of the
new terminus are amplified separately. The 5' end of the one
amplified sequence encodes the peptide linker, while the 3'
end of the other amplified sequence also encodes the peptide
linker. Since the 5' end of the first fragment is complemen-
tary to the 3' end of the second fragment, the two fragments
(after partial purification, e.g. on LMP agarose) can be used
as an overlapping template in a third PCR reaction. The
amplified sequence will contain codons, the segment on the
carboxy side of the opening site (now forming the amino
sequence), the linker, and the sequence on the amino side of
the opening site (now forming the carboxyl sequence). The
antigen is ligated into a plasmid. Each method represents a
separate embodiment of the present invention.

In another embodiment, the present invention further
comprises a phage based chromosomal integration system
for clinical applications. A host strain that is auxotrophic for
essential enzymes, including, but not limited to, d-alanine
racemase will be used, for example Lmdal(-)dat(-). In
another embodiment, in order to avoid a “phage curing
step,” a phage integration system based on PSA is used
(Lauver, et al., 2002 J Bacteriol, 184:4177-4186). This
requires, in another embodiment, continuous selection by
antibiotics to maintain the integrated gene. Thus, in another
embodiment, the current invention enables the establishment
of'a phage based chromosomal integration system that does
not require selection with antibiotics. Instead, an auxo-
trophic host strain will be complemented.

The recombinant proteins of the present invention are
synthesized, in another embodiment, using recombinant
DNA methodology. This involves, in one embodiment,
creating a DNA sequence, placing the DNA in an expression
cassette, such as the plasmid of the present invention, under
the control of a particular promoter/regulatory element, and
expressing the protein. DNA encoding the protein (e.g.
non-hemolytic LLO) of the present invention is prepared, in
another embodiment, by any suitable method, including, for
example, cloning and restriction of appropriate sequences or
direct chemical synthesis by methods such as the phospho-
triester method of Narang et al. (1979, Meth. Enzymol. 68:
90-99); the phosphodiester method of Brown et al. (1979,
Meth. Enzymol 68: 109-151); the diethylphosphoramidite
method of Beaucage et al. (1981, Tetra. Lett., 22: 15
1859-1862); and the solid support method of U.S. Pat. No.
4,458,066.

In another embodiment, chemical synthesis is used to
produce a single stranded oligonucleotide. This single
stranded oligonucleotide is converted, in various embodi-
ments, into double stranded DNA by hybridization with a
complementary sequence, or by polymerization with a DNA
polymerase using the single strand as a template. One of
skill in the art would recognize that while chemical synthesis
of DNA is limited to sequences of about 100 bases, longer
sequences can be obtained by the ligation of shorter
sequences. In another embodiment, subsequences are cloned
and the appropriate subsequences cleaved using appropriate
restriction enzymes. The fragments are then be ligated to
produce the desired DNA sequence.

In another embodiment, DNA encoding the recombinant
protein of the present invention is cloned using DNA
amplification methods such as polymerase chain reaction
(PCR). Thus, the gene for non-hemolytic LLO is PCR
amplified, using a sense primer comprising a suitable restric-
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tion site and an antisense primer comprising another restric-
tion site, e.g. a non-identical restriction site to facilitate
cloning.

In another embodiment, the recombinant fusion protein
gene is operably linked to appropriate expression control
sequences for each host. Promoter/regulatory sequences are
described in detail elsewhere herein. In another embodi-
ment, the plasmid further comprises additional promoter
regulatory elements, as well as a ribosome binding site and
a transcription termination signal. For eukaryotic cells, the
control sequences will include a promoter and an enhancer
derived from e g immunoglobulin genes, SV40, cytomega-
lovirus, etc., and a polyadenylation sequence. In another
embodiment, the sequences include splice donor and accep-
tor sequences.

In one embodiment, the term “operably linked” refers to
a juxtaposition wherein the components so described are in
a relationship permitting them to function in their intended
manner. A control sequence “operably linked” to a coding
sequence is ligated in such a way that expression of the
coding sequence is achieved under conditions compatible
with the control sequences.

In another embodiment, in order to select for an auxo-
trophic bacteria comprising the plasmid, transformed auxo-
trophic bacteria are grown on a media that will select for
expression of the amino acid metabolism gene. In another
embodiment, a bacteria auxotrophic for D-glutamic acid
synthesis is transformed with a plasmid comprising a gene
for D-glutamic acid synthesis, and the auxotrophic bacteria
will grow in the absence of D-glutamic acid, whereas
auxotrophic bacteria that have not been transformed with the
plasmid, or are not expressing the plasmid encoding a
protein for D-glutamic acid synthesis, will not grow. In
another embodiment, a bacterium auxotrophic for D-alanine
synthesis will grow in the absence of D-alanine when
transformed and expressing the plasmid of the present
invention if the plasmid comprises an isolated nucleic acid
encoding an amino acid metabolism enzyme for D-alanine
synthesis. Such methods for making appropriate media
comprising or lacking necessary growth factors, supple-
ments, amino acids, vitamins, antibiotics, and the like are
well known in the art, and are available commercially
(Becton-Dickinson, Franklin Lakes, N.J.). Each method
represents a separate embodiment of the present invention.

In another embodiment, once the auxotrophic bacteria
comprising the plasmid of the present invention have been
selected on appropriate media, the bacteria are propagated in
the presence of a selective pressure. Such propagation
comprises growing the bacteria in media without the auxo-
trophic factor. The presence of the plasmid expressing an
amino acid metabolism enzyme in the auxotrophic bacteria
ensures that the plasmid will replicate along with the bac-
teria, thus continually selecting for bacteria harboring the
plasmid. The skilled artisan, when equipped with the present
disclosure and methods herein will be readily able to scale-
up the production of the Listeria vaccine vector by adjusting
the volume of the media in which the auxotrophic bacteria
comprising the plasmid are growing.

The skilled artisan will appreciate that, in another
embodiment, other auxotroph strains and complementation
systems are adopted for the use with this invention.

In one embodiment, provided herein is a method of
administering the composition of the present invention. In
another embodiment, provided herein is a method of admin-
istering the vaccine of the present invention. In another
embodiment, provided herein is a method of administering
the recombinant polypeptide or recombinant nucleotide of
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the present invention. In another embodiment, the step of
administering the composition, vaccine, recombinant poly-
peptide or recombinant nucleotide of the present invention is
performed with an attenuated recombinant form of Listeria
comprising the composition, vaccine, recombinant nucleo-
tide or expressing the recombinant polypeptide, each in its
own discrete embodiment. In another embodiment, the
administering is performed with a different attenuated bac-
terial vector. In another embodiment, the administering is
performed with a DNA vaccine (e.g. a naked DNA vaccine).
In another embodiment, administration of a recombinant
polypeptide of the present invention is performed by pro-
ducing the recombinant protein, then administering the
recombinant protein to a subject. Each possibility represents
a separate embodiment of the present invention.

In one embodiment, the vaccine for use in the methods of
the present invention comprises a recombinant Listeria
monocytogenes, in any form or embodiment as described
herein. In one embodiment, the vaccine for use in the present
invention consists of a recombinant Listeria monocytogenes
of the present invention, in any form or embodiment as
described herein. In another embodiment, the vaccine for
use in the methods of the present invention consists essen-
tially of a recombinant Listeria monocytogenes of the pres-
ent invention, in any form or embodiment as described
herein. In one embodiment, the term “comprise” refers to the
inclusion of a recombinant Listeria monocytogenes in the
vaccine, as well as inclusion of other vaccines or treatments
that may be known in the art. In another embodiment, the
term “consisting essentially of” refers to a vaccine, whose
functional component is the recombinant Listeria monocy-
togenes, however, other components of the vaccine may be
included that are not involved directly in the therapeutic
effect of the vaccine and may, for example, refer to com-
ponents which facilitate the effect of the recombinant Lisz-
eria monocytogenes (e.g. stabilizing, preserving, etc.). In
another embodiment, the term “consisting” refers to a vac-
cine, which contains the recombinant Listeria monocyto-
genes.

In another embodiment, the methods of the present inven-
tion comprise the step of administering a recombinant
Listeria monocytogenes, in any form or embodiment as
described herein. In one embodiment, the methods of the
present invention consist of the step of administering a
recombinant Listeria monocytogenes of the present inven-
tion, in any form or embodiment as described herein. In
another embodiment, the methods of the present invention
consist essentially of the step of administering a recombi-
nant Listeria monocytogenes of the present invention, in any
form or embodiment as described herein. In one embodi-
ment, the term “comprise” refers to the inclusion of the step
of administering a recombinant Listeria monocytogenes in
the methods, as well as inclusion of other methods or
treatments that may be known in the art. In another embodi-
ment, the term “consisting essentially of” refers to a method,
whose functional component is the administration of recom-
binant Listeria monocytogenes, however, other steps of the
methods may be included that are not involved directly in
the therapeutic effect of the methods and may, for example,
refer to steps which facilitate the effect of the administration
of recombinant Listeria monocytogenes. In one embodi-
ment, the term “consisting” refers to a method of adminis-
tering recombinant Listeria monocytogenes with no addi-
tional steps.

In another embodiment, the immune response elicited by
methods and compositions of the present invention com-
prises a CD8" T cell-mediated response. In another embodi-
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ment, the immune response consists primarily of a CD8* T
cell-mediated response. In another embodiment, the only
detectable component of the immune response is a CD8* T
cell-mediated response (see Examples 7-11).

In another embodiment, the immune response elicited by
methods and compositions provided herein comprises a
CD4* T cell-mediated response. In another embodiment, the
immune response consists primarily of a CD4+ T cell-
mediated response. In another embodiment, the only detect-
able component of the immune response is a CD4* T
cell-mediated response. In another embodiment, the CD4* T
cell-mediated response is accompanied by a measurable
antibody response against the antigen. In another embodi-
ment, the CD4* T cell-mediated response is not accompa-
nied by a measurable antibody response against the antigen
(see Examples 7-11).

In another embodiment, the immune response elicited by
methods and compositions provided herein comprises an
innate immune response wherein M1 macrophages and
dendritic cells (DCs) are activated.

In one embodiment, provided herein is a method of
increasing intratumoral ratio of CD8+/T regulatory cells,
whereby and in another embodiment, the method compris-
ing the step of administering to the subject a composition
comprising the recombinant polypeptide, recombinant List-
eria, or recombinant vector of the present invention (see
Examples 7-11).

In another embodiment, provided herein is a method of
increasing intratumoral ratio of CD8+/T regulatory cells,
whereby and in another embodiment, the method comprises
the step of administering to the subject a composition
comprising the recombinant polypeptide, recombinant List-
eria, or recombinant vector of the present invention (see
Examples 7-11).

In one embodiment, provided herein is a method of
increasing intratumoral ratio of CD8+/myeloid-derived sup-
pressor cells (MDSC), whereby and in another embodiment,
the method comprises the step of administering to the
subject a composition comprising the recombinant Listeria,
or recombinant vector of the present invention.

In another embodiment, provided herein is a method of
increasing the ratio of CD8+/myeloid-derived suppressor
cells (MDSC) at sites of disease, whereby and in another
embodiment, the method comprises the step of administer-
ing to the subject a composition comprising the recombinant
Listeria, or recombinant vector of the present invention.

Common plasma markers in human MDSCs include
CD33, CD11b, CD15, CD14 negative, MHC class II nega-
tive, HLA DR’ °" ~. Common intracellular markers include
arginase, and iNOS. Further, human MDSCs’ suppressive
activity or mechanism includes use of nitric oxide (NO),
arginase, or nitrotyrosine. In mice, myeloid-derived suppres-
sor cells (MDSC) are CD11b and Gr-1 double positive and
have also have been described as F4/80™, CDI11c™",
MHCII-/*", Ly6C+. CD11b+/Gr-1+ cells that have immu-
nosuppressive ability have been described to produce IFN-g.
MDSCs can be monocytic and/or granulocytic as well.

In one embodiment, MDSCs at disease sites can unex-
pectedly inhibit both, the function of antigen-specific and
non-specific T cell function, while spleen MDSCs can only
inhibit the function of antigen-specific T cells. As demon-
strated in the Examples below (see Examples 21-24), the
live attenuated Listeria provided herein reduces the amount
or quantity of suppressor cells in a disease thereby allowing
CDS8 T cell replication and infiltration at the disease site, for
example, a tumor site.
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Lm or sublytic doses of LL.O in human epithelial Caco-2
cells induce the expression of IL-6 that reduces bacterial
intracellular growth and causes over expression of inducible
nitric oxide synthase (NOS). Nitric oxide appears to be an
essential component of the innate immune response to Lm,
having an important role in listericidal activity of neutro-
phils and macrophages, with a deficiency of inducible NO
synthase (iNOS) causing susceptibility to Lm infection.

Lm infection also results in the generation of robust MHC
Class 2 restricted CD4" T cell responses, and shifts the
phenotype of CD4* T cells to Th-1. Further, CD4" T cell
help is required for the generation and maintenance of
functional CD8"* T cell memory against Lm. Moreover, it
has been reported infection of mice intraperitoneally with
Lm caused a local induction of CD4* T, cells associated
with IL-17 secretion in the peritoneal cavity however no
changes were observed in the splenic or lymph node T cell
populations after these injections. In addition, Listeria infec-
tion also involves other systems not essentially a part of the
immune system but which support immune function to affect
a therapeutic outcome, such as myelopoesis and vascular
endothelial cell function.

Lm infected macrophages produce TNF-c, 1L.-18 and
1L-12, all of which are important in inducing the production
of IFN-y and subsequent killing and degradation of Lm in
the phagosome. I[.-12 deficiency results in an increased
susceptibility to listeriosis, which can be reversed through
administration of IFN-y. NK cells are the major source of
IFN-y in early infection. Upon reinfection memory CD8* T
cells have the ability to produce IFN-y in response to I1[.-12
and 1L-18 in the absence of the cognate antigen. CD8* T
cells co-localize with the macrophages and Lm in the T cell
area of the spleen where they produce IFN-independent of
antigen. IFN-y production by CD8" T cells depends partially
on the expression of LLO.

IFN-y plays an important role in anti-tumor responses
obtained by Lm-based vaccines. Although produced initially
by NK cells, IFN-y levels are subsequently maintained by
CD4* T-helper cells for a longer period. Lm vaccines require
IFN-y for effective tumor regression, and IFN-y is specifi-
cally required for tumor infiltration of lymphocytes. IFN-y
also inhibits angiogenesis at the tumor site in the early
effector phase following vaccination.

A poorly described property of LLO, is its ability to
induce epigenetic modifications affecting control of DNA
expression. Extracellular LLO induces a dephosphorylation
of the histone protein H3 and a similar deacetylation of the
histone H4 in early phases of Listeria infection. This epi-
genetic effect results in reduced transcription of certain
genes involved in immune function, thus providing a mecha-
nism by which LLO may regulate the expression of gene
products required for immune responses. Another genomic
effect of LLO is its ability to increase NF-k[} translocation
in association with the expression of ICAM and E-selectin,
and the secretion of IL-8 and MCP-1. Another signaling
cascade affected by LLO is the Mitogen Activated Protein
Kinase (MAPK) pathway, resulting in increase of Ca®*
influx across the cell membrane, which facilitates the entry
of Listeria into endothelial cells and their subsequent infec-
tion.

LLO is also a potent inducer of inflammatory cytokines
such as IL-6, IL-8, IL-12, IL-18, TNF-q, and IFN-y, GM-
CSF as well as NO, chemokines, and costimulatory mol-
ecules that are important for innate and adaptive immune
responses. The proinflammatory cytokine-inducing property
of LLO is thought to be a consequence of the activation of
the TLR4 signal pathway. One evidence of the high Thl
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cytokine-inducing activity of LLO is in that protective
immunity to Lm can be induced with killed or avirulent Lm
when administered together with LL.O, whereas the protec-
tion is not generated in the absence of LLO. Macrophages in
the presence of LLO release IL-1a, TNF-a, IL-12 and
IL-18, which in turn activate NK cells to release IFN-y
resulting in enhanced macrophage activation.

IL-18 is also critical to resistance to Lm, even in the
absence of IFN-y, and is required for TNF-a and NO
production by infected macrophages. A deficiency of cas-
pase-1 impairs the ability of macrophages to clear Lm and
causes a significant reduction in IFN-y production and
listericidal activity that can be reversed by IL-18. Recom-
binant IFN-y injection restores innate resistance to listeriosis
in caspase-1~"~ mice. Caspase-1 activation precedes the cell
death of macrophages infected with Lm, and LLO deficient
mutants that cannot escape the phagolysosome have an
impaired ability to activate caspase-1.

LLO secreted by cytosolic Lm causes specific gene
upregulation in macrophages resulting in significant I[FN-y
transcription and secretion. Cytosolic LLO activates a potent
type 1 interferon response to invasive Lm independent of
Toll-like receptors (TLR) without detectable activation of
NF-KB and MAPK. One of the IFN I-specific apoptotic
genes, TNF-a related apoptosis-inducing ligand (TRAIL), is
up-regulated during Lm infection in the spleen. Mice lack-
ing TRAIL are also more resistant to primary listeriosis
coincident with lymphoid and myeloid cell death in the
spleen.

Lm also secretes P60 which acts directly on naive DCs to
stimulate their maturation in a manner that permits activa-
tion of NK cells. Both activated DCs and IFN-y that is
produced by NK cells can boost cellular (Thl-type) immune
responses. ActA stimulate toll receptors, for example TLR-
5, which plays a fundamental role in pathogen recognition
and activation of innate immune response.

In one embodiment, the Lm vaccines provided herein
reduce the number of Tregs and MDSCs in a disease further
provided herein. In another embodiment, L. m vaccines pro-
vided herein are useful to improve immune responses by
reducing the number of Tregs and MDSCs at a specific site
in a subject. Such a site can be an inflammation site due to
allergies, trauma, infection, disease or the site can be a tumor
site.

In another embodiment, both monocytic and granulocytic
MDSCs purified from the tumors of Listeria-treated mice
are less able to suppress the division of CD8+ T cells than
MDSCs purified from the tumors of untreated mice, whereas
monocytic and granulocytic MDSCs purified from the
spleens of these same tumor-bearing mice show no change
in their function after vaccination with Listeria (see
Examples 7-11 herein). In one embodiment, this effect is
seen because splenic MDSCs are only suppressive in an
antigen-specific manner. Hence, treatment with Listeria has
the distinct advantage that it allows for tumor-specific inhi-
bition of tumor suppressive cells such as Tregs and MDSCs
(see Examples 7-11 herein). Another unexpected advantage
provided by the live attenuated Listeria of the methods and
compositions provided herein is that there are lower amount
of Tregs in the tumor, and the ones that persist lose the
ability to suppress T cell replication (see Examples 7-11
herein).

In one embodiment, provided herein is a method of
reducing the percentage of suppressor cells in a disease site
in a subject, the method comprising the step of administering
a live attenuated Listeria vaccine strain to the subject.
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In another embodiment, provided herein is a method of
reducing suppressor cells’ ability to suppress T cell repli-
cation in a disease site in a subject, the method comprising
the step of administering a live attenuated Listeria vaccine
strain to said subject.

In one embodiment, reducing the number of the suppres-
sor cells at a disease site effectively treats the disease. In
another embodiment, reducing the number of the suppressor
cells at the disease site enhances an anti-disease immune
response in the subject having the disease at the disease site.
In another embodiment, the immune response is a cell-
mediated immune response. In another embodiment, the
immune response is a tumor infiltrating T-lymphocytes
(TILs) immune response.

In one embodiment, provided herein is a method of
reducing the percentage of suppressor cells in a disease in a
subject and enhancing a therapeutic response against the
disease in the subject, the method comprising the step of
administering a live attenuated Listeria vaccine strain to the
subject, thereby reducing the percentage of suppressor cells
in the disease and enhancing a therapeutic response against
the disease in the subject.

In another embodiment, provided herein is a method of
reducing suppressor cells” ability to suppress replication of
T cells in a disease in a subject and enhancing a therapeutic
response against the disease in the subject, the method
comprising the step of administering a live attenuated List-
eria vaccine strain to the subject.

In one embodiment, the term “percentage” is representa-
tive of the amount, quantity, or numbers, etc., of either
Tregs, MDSCs, or CD8/CD4 T cells measures in an assay or
in an immune response. In another embodiment, it refers to
the amount, quantity, percentage, etc. of any composition,
cell, protein, bacteria or Listeria cell provided herein.

In one embodiment, provided herein is a method of
attenuating a recombinant Listeria vaccine strain, wherein
the method comprises deleting the genomic prfA, inlC and
actA genes, where in another embodiment, the attenuation is
relative to the wild-type strain or a mutant strain having a
mutant prfA, inlC, or actA, or any virulence gene thereof. In
another embodiment, provided herein is a method of further
enhancing the immunogenicity of a recombinant Listeria
vaccine strain also provided herein, wherein the method
comprises deleting the genomic prfA, inlC and actA genes.
In one embodiment, provided herein is a method of attenu-
ating a recombinant Listeria vaccine strain, wherein the
method comprises deleting the genomic prfA, inlC or actA
genes, where in another embodiment, the attenuation is
relative to the wild-type strain or a mutant strain having a
mutant prfA, inlC, or actA, or any virulence gene thereof. In
another embodiment, provided herein is a method of further
enhancing the immunogenicity of a recombinant Listeria
vaccine strain also provided herein, wherein the method
comprises deleting the genomic prfA, inlC or actA genes.

In another embodiment, provided herein is a method of
eliciting an enhanced immune response in a subject recov-
ering from cytotoxic treatment to a tumor or a cancer, the
method comprising administering to said subject a compo-
sition comprising the recombinant Listeria strain provided
herein. In another embodiment, the recombinant Listeria
strain comprises a mutation or deletion of the inlC gene, an
actA gene, a prfA gene, a PlcA gene, a PLcB gene, a dal gene
or a dal/dat gene. In another embodiment, the recombinant
Listeria strain comprises an inlC and actA mutation or
deletion. In another embodiment, the recombinant Listeria
strain comprises an inlC or actA mutation or deletion. In
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another embodiment, the recombinant Listeria strain con-
sists of an inlC or actA mutation or deletion.

In one embodiment, the immune response elicited by the
compositions and methods provided herein is not antigen
specific.

In another embodiment, the present invention provides a
method of reducing an incidence of cancer or infectious
disease, comprising administering a composition of the
present invention. In another embodiment, the present
invention provides a method of ameliorating cancer or
infectious disease, comprising administering a composition
of the present invention. Each possibility represents a sepa-
rate embodiment of the present invention.

In one embodiment, the cancer treated by a method of the
present invention is breast cancer. In another embodiment,
the cancer is a cervix cancer. In another embodiment, the
cancer is an Her2 containing cancer. In another embodiment,
the cancer is a melanoma. In another embodiment, the
cancer is pancreatic cancer. In another embodiment, the
cancer is ovarian cancer. In another embodiment, the cancer
is gastric cancer. In another embodiment, the cancer is a
carcinomatous lesion of the pancreas. In another embodi-
ment, the cancer is pulmonary adenocarcinoma. In another
embodiment, it is a glioblastoma multiforme. In another
embodiment, it is a hypoxic solid tumor. In another embodi-
ment, the cancer is colorectal adenocarcinoma. In another
embodiment, the cancer is pulmonary squamous adenocar-
cinoma. In another embodiment, the cancer is gastric adeno-
carcinoma. In another embodiment, the cancer is an ovarian
surface epithelial neoplasm (e.g. a benign, proliferative or
malignant variety thereof). In another embodiment, the
cancer is an oral squamous cell carcinoma. In another
embodiment, the cancer is non small-cell lung carcinoma. In
another embodiment, the cancer is an endometrial carci-
noma. In another embodiment, the cancer is a bladder
cancer. In another embodiment, the cancer is a head and
neck cancer. In another embodiment, the cancer is a prostate
carcinoma. Each possibility represents a separate embodi-
ment of the present invention.

It is to be understood that the methods of the present
invention may be used to treat any infectious disease, which
in one embodiment, is bacterial, viral, microbial, microor-
ganism, pathogenic, or combination thereof, infection. In
another embodiment, the methods of the present invention
are for inhibiting or suppressing a bacterial, viral, microbial,
microorganism, pathogenic, or combination thereof, infec-
tion in a subject. In another embodiment, the present inven-
tion provides a method of eliciting a cytotoxic T-cell
response against a bacterial, viral, microbial, microorgan-
ism, pathogenic, or combination thereof, infection in a
subject. In another embodiment, the present invention pro-
vides a method of inducing an immune response against a
bacterial, viral, microbial, microorganism, pathogenic, or
combination thereof, infection in a subject. In one embodi-
ment, the infection is viral, which in one embodiment, is
HIV. In one embodiment, the infection is bacterial, which in
one embodiment, is mycobacterial, which in one embodi-
ment, is tuberculosis. In one embodiment, the infection is
eukaryotic, which in one embodiment, is plasmodium,
which in one embodiment, is malaria.

In one embodiment, the present invention provides a
method of inducing an immune response in a subject having
a concomitant helminth infection, where in another embodi-
ment, the method comprises using a Listeria vaccine vector.

In another embodiment, the present invention provides a
method of inducing an immune response in a subject having
concomitant infectious disease and helminth infections, the
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method comprising administering to the subject a therapeu-
tically effective dose of a Listeria vaccine vector, wherein
the Listeria vaccine vector expresses and secretes an antigen
of the infectious disease.

In another embodiment, the present invention provides a
method of inducing an immune response in a subject having
concomitant infectious disease and helminth infections, the
method comprising administering to the subject a therapeu-
tically effective dose of a Listeria vaccine vector, wherein
the Listeria vaccine vector expresses and secretes an antigen
of'the infectious disease fused to an additional immunogenic
polypeptide.

In another embodiment, the present invention provides a
method of enhancing an innate immune response against an
infectious disease in a subject, the method comprising the
step of administering to the subject a therapeutically effec-
tive dose of the composition comprising the Listeria vaccine
vector provided herein.

In one embodiment, the present invention provides a
method of eliciting an enhanced immune response to an
infectious disease in a subject, the method comprising
administering to the subject a therapeutically effective dose
of the composition comprising the Listeria vaccine vector
provided herein. In another embodiment, the immune
response is not antigen specific.

In another embodiment, the present invention provides a
method of preventing the onset of an infectious disease in a
subject, the method comprising the step of administering to
the subject a therapeutically effective dose of the composi-
tion comprising the Listeria vaccine vector provided herein.
In another embodiment, the immune response is not antigen
specific.

In one embodiment, the present invention provides a
method of treating an infectious disease in a subject, the
method comprising the step of administering to the subject
a therapeutically effective dose of the composition compris-
ing the Listeria vaccine vector provided herein. In another
embodiment, the immune response is not antigen specific.

In one embodiment, the infectious disease is one caused
by, but not limited to, any one of the following pathogens:
BCG/Tuberculosis, Malaria, Plasmodium falciparum, plas-
modium malariae, plasmodium vivax, Rotavirus, Cholera,
Diptheria-Tetanus, Pertussis, Haemophilus influenzae,
Hepatitis B, Human papilloma virus, Influenza seasonal),
Influenza A (HIN1) Pandemic, Measles and Rubella,
Mumps, Meningococcus A+C, Oral Polio Vaccines, mono,
bi and trivalent, Pneumococcal, Rabies, Tetanus Toxoid,
Yellow Fever, Bacillus anthracis (anthrax), Clostridium
botulinum toxin (botulism), Yersinia pestis (plague), Variola
major (smallpox) and other related pox viruses, Francisella
tularensis (tularemia), Viral hemorrhagic fevers, Arena
viruses (LCM, Junin virus, Machupo virus, Guanarito virus,
Lassa Fever), Bunyaviruses (Hantaviruses, Rift Valley
Fever), Flaviruses (Dengue), Filo viruses (Ebola, Marburg),
Burkholderia pseudomallei, Coxiella burnetii (Q fever),
Brucella species (brucellosis), Burkholderia mallei (glan-
ders), Chlamydia psittaci (Psittacosis), Ricin toxin (from
Ricinus communis), Epsilon toxin of Clostridium perfrin-
gens, Staphylococcus enterotoxin B, Typhus fever (Rickett-
sia prowazekii), other Rickettsias, Food- and Waterborne
Pathogens, Bacteria (Diarrheagenic E. coli, Pathogenic
Vibrios, Shigella species, Salmonella BCG/, Campylobacter
Jejuni, Yersinia enterocolitica), Viruses (Caliciviruses,
Hepatitis A, West Nile Virus, LaCrosse, California encepha-
litis, VEE, EEE, WEE, Japanese Encephalitis Virus, Kyasa-
nur Forest Virus, Nipah virus, hantaviruses, Tick borne
hemorrhagic fever viruses, Chikungunya virus, Crimean-
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Congo Hemorrhagic fever virus, Tick borne encephalitis
viruses, Hepatitis B virus, Hepatitis C virus, Herpes Simplex
virus (HSV), Human immunodeficiency virus (HIV),
Human papillomavirus (HPV)), Protozoa (Cryptosporidium
parvum, Cyclospora cayatanensis, Giardia lamblia, Enta-
moeba histolytica, Toxoplasma), Fungi (Microsporidia),
Yellow fever, Tuberculosis, including drug-resistant TB,
Rabies, Prions, Severe acute respiratory syndrome associ-
ated coronavirus (SARS-CoV), Coccidioides posadasii,
Coccidioides immitis, Bacterial vaginosis, Chlamydia tra-
chomatis, Cytomegalovirus, Granuloma inguinale, Hemo-
philus ducreyi, Neisseria gonorrhea, Treponema pallidum,
Trichomonas vaginalis, or any other infectious disease
known in the art that is not listed herein.

In another embodiment, the infectious disease is a live-
stock infectious disease. In another embodiment, livestock
diseases can be transmitted to man and are called “zoonotic
diseases.” In another embodiment, these diseases include,
but are not limited to, Foot and mouth disease, West Nile
Virus, rabies, canine parvovirus, feline leukemia virus,
equine influenza virus, infectious bovine rhinotracheitis
(IBR), pseudorabies, classical swine fever (CSF), IBR,
caused by bovine herpesvirus type 1 (BHV-1) infection of
cattle, and pseudorabies (Aujeszky’s disease) in pigs, toxo-
plasmosis, anthrax, vesicular stomatitis virus, rhodococcus
equi, Tularemia, Plague (Yersinia pestis), trichomonas.

In another embodiment of the methods of the present
invention, the subject mounts an immune response against
an antigen-expressing tumor or target antigen, thereby medi-
ating anti-tumor effects.

In one embodiment, the recombinant Listeria monocyto-
genes for use in the present invention secretes a heterolo-
gous peptide. In another embodiment, the recombinant List-
eria monocytogenes for use in the present invention
expresses a heterologous peptide. In another embodiment,
the recombinant Listeria monocytogenes for use in the
present invention expresses and secretes a non-hemolytic
LLO, as described herein.

In one embodiment, a treatment protocol of the present
invention is therapeutic. In another embodiment, the proto-
col is prophylactic. In another embodiment, the vaccines of
the present invention are used to protect people at risk for
cancer such as breast cancer or other types of tumors
because of familial genetics or other circumstances that
predispose them to these types of ailments as will be
understood by a skilled artisan. Similarly, in another
embodiment, the vaccines of the present invention are used
to protect people at risk for infectious disease; such as
tuberculosis, malaria, influenza, and leishmaniasis. In
another embodiment, the vaccines are used as a cancer
immunotherapy in early stage disease, or after debulking of
tumor growth by surgery, conventional chemotherapy or
radiation treatment. Following such treatments, the vaccines
of the present invention are administered so that the CTL
response to the tumor antigen of the vaccine destroys
remaining metastases and prolongs remission from the can-
cer. In another embodiment, vaccines of the present inven-
tion are used to effect the growth of previously established
tumors and to kill existing tumor cells. Each possibility
represents a separate embodiment of the present invention.

In another embodiment, the vaccines and immunogenic
compositions utilized in any of the methods described above
have any of the characteristics of vaccines and immunogenic
compositions of the present invention. Each characteristic
represents a separate embodiment of the present invention.

Various embodiments of dosage ranges are contemplated
by this invention. In one embodiment, in the case of vaccine
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vectors, the dosage is in the range of 0.4 LD, /dose. In
another embodiment, the dosage is from about 0.4-4.9
LD,y/dose. In another embodiment the dosage is from about
0.5-0.59 LDsy/dose. In another embodiment the dosage is
from about 0.6-0.69 LD, /dose. In another embodiment the
dosage is from about 0.7-0.79 LD;/dose. In another
embodiment the dosage is about 0.8 LD,y /dose. In another
embodiment, the dosage is 0.4 LD,/dose to 0.8 of the
LDy /dose.

In another embodiment, the dosage is 107 bacteria/dose.
In another embodiment, the dosage is 1.5x107 bacteria/dose.
In another embodiment, the dosage is 2x107 bacteria/dose.
In another embodiment, the dosage is 3x10” bacteria/dose.
In another embodiment, the dosage is 4x107 bacteria/dose.
In another embodiment, the dosage is 6x10” bacteria/dose.
In another embodiment, the dosage is 8x107 bacteria/dose.
In another embodiment, the dosage is 1x10® bacteria/dose.
In another embodiment, the dosage is 1.5x108 bacteria/dose.
In another embodiment, the dosage is 2x10® bacteria/dose.
In another embodiment, the dosage is 3x10® bacteria/dose.
In another embodiment, the dosage is 4x10® bacteria/dose.
In another embodiment, the dosage is 6x10® bacteria/dose.
In another embodiment, the dosage is 8x10® bacteria/dose.
In another embodiment, the dosage is 1x10° bacteria/dose.
In another embodiment, the dosage is 1.5x10° bacteria/dose.
In another embodiment, the dosage is 2x10° bacteria/dose.
In another embodiment, the dosage is 3x10° bacteria/dose.
In another embodiment, the dosage is 5x10° bacteria/dose.
In another embodiment, the dosage is 6x10° bacteria/dose.
In another embodiment, the dosage is 8x10° bacteria/dose.
In another embodiment, the dosage is 1x10'° bacteria/dose.
In another embodiment, the dosage is 1.5x10'° bacteria/
dose. In another embodiment, the dosage is 2x10"° bacteria/
dose. In another embodiment, the dosage is 3x10"° bacteria/
dose. In another embodiment, the dosage is 5x10'° bacteria/
dose. In another embodiment, the dosage is 6x10"° bacteria/
dose. In another embodiment, the dosage is 8x10'° bacteria/
dose. In another embodiment, the dosage is 8x10° bacteria/
dose. In another embodiment, the dosage is 1x10"! bacteria/
dose. In another embodiment, the dosage is 1.5x10'!
bacteria/dose. In another embodiment, the dosage is 2x10*
bacteria/dose. In another embodiment, the dosage is 3x10"
bacteria/dose. In another embodiment, the dosage is 5x10'*
bacteria/dose. In another embodiment, the dosage is 6x10'*
bacteria/dose. In another embodiment, the dosage is 8x10"*
bacteria/dose. Each possibility represents a separate embodi-
ment of the present invention.

In one embodiment, the adjuvant vaccine of the present
invention comprise a vaccine given in conjunction. In
another embodiment, the adjuvant vaccine of the present
invention is administered following administration of a
vaccine regimen, wherein the vaccine regimen is a viral,
bacteria, nucleic acid, or recombinant polypeptide vaccine
formulation.

“Adjuvant” typically refers, in another embodiment, to
compounds that, when administered to an individual or
tested in vitro, increase the immune response to an antigen
in the individual or test system to which the antigen is
administered. In another embodiment, an immune adjuvant
enhances an immune response to an antigen that is weakly
immunogenic when administered alone, i.e., inducing no or
weak antibody titers or cell-mediated immune response. In
another embodiment, the adjuvant increases antibody titers
to the antigen. In another embodiment, the adjuvant lowers
the dose of the antigen effective to achieve an immune
response in the individual. However, in one embodiment, in
the present invention, the adjuvant enhances an immune
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response in an antigen-unspecific manner in order to enable
a heightened state of an immune response, as it applies to
neonates, or in order to enable the recovery of the immune
response following cytotoxic treatment, as it applies to older
children and adults and also as further provided herein.

In another embodiment, the methods of the present inven-
tion further comprise the step of administering to the subject
a booster vaccination. In one embodiment, the booster
vaccination follows a single priming vaccination. In another
embodiment, a single booster vaccination is administered
after the priming vaccinations. In another embodiment, two
booster vaccinations are administered after the priming
vaccinations. In another embodiment, three booster vacci-
nations are administered after the priming vaccinations. In
one embodiment, the period between a prime and a boost
vaccine is experimentally determined by the skilled artisan.
In another embodiment, the period between a prime and a
boost vaccine is 1 week, in another embodiment it is 2
weeks, in another embodiment, it is 3 weeks, in another
embodiment, it is 4 weeks, in another embodiment, it is 5
weeks, in another embodiment it is 6-8 weeks, in yet another
embodiment, the boost vaccine is administered 8-10 weeks
after the prime vaccine.

In one embodiment, a vaccine or immunogenic compo-
sition of the present invention is administered alone to a
subject. In another embodiment, the vaccine or immuno-
genic composition is administered together with another
cancer therapy. In another embodiment, the cancer therapy
is chemotherapy, immuno therapy, radiation, surgery or any
other type of therapy available in the art as will be under-
stood by a skilled artisan. Each possibility represents a
separate embodiment of the present invention.

In one embodiment, the construct or nucleic acid mol-
ecule is integrated into the Listerial chromosome using
homologous recombination. Techniques for homologous
recombination are well known in the art, and are described,
for example, in Baloglu S, Boyle S M, et al (Immune
responses of mice to vaccinia virus recombinants expressing
either Listeria monocytogenes partial listeriolysin or Bru-
cella abortus ribosomal L7/1.12 protein. Vet Microbiol
2005, 109(1-2): 11-7); and Jiang L. L, Song H H, et al.,
(Characterization of a mutant Listeria monocytogenes strain
expressing green fluorescent protein. Acta Biochim Biophys
Sin (Shanghai) 2005, 37(1): 19-24). In another embodiment,
homologous recombination is performed as described in
U.S. Pat. No. 6,855,320. In this case, a recombinant Lm
strain that expresses E7 was made by chromosomal integra-
tion of the E7 gene under the control of the hly promoter and
with the inclusion of the hly signal sequence to ensure
secretion of the gene product, yielding the recombinant
referred to as Lm-AZ/E7. In another embodiment, a tem-
perature sensitive plasmid is used to select the recombinants.
Each technique represents a separate embodiment of the
present invention.

In another embodiment, the construct or nucleic acid
molecule is integrated into the Listerial chromosome using
transposon insertion. Techniques for transposon insertion
are well known in the art, and are described, inter alia, by
Sun et al. (Infection and Immunity 1990, 58: 3770-3778) in
the construction of DP-1.967. Transposon mutagenesis has
the advantage, in another embodiment, that a stable genomic
insertion mutant can be formed but the disadvantage that the
position in the genome where the foreign gene has been
inserted is unknown.

In another embodiment, the construct or nucleic acid
molecule is integrated into the Listerial chromosome using
phage integration sites (Lauer P, Chow M Y et al, Construc-
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tion, characterization, and use of two Listeria monocyto-
genes site-specific phage integration vectors. ] Bacteriol
2002; 184(15): 4177-86). In certain embodiments of this
method, an integrase gene and attachment site of a bacte-
riophage (e.g. U153 or PSA listeriophage) is used to insert
the heterologous gene into the corresponding attachment
site, which may be any appropriate site in the genome (e.g.
comK or the 3' end of the arg tRNA gene). In another
embodiment, endogenous prophages are cured from the
attachment site utilized prior to integration of the construct
or heterologous gene. In another embodiment, this method
results in single-copy integrants. Each possibility represents
a separate embodiment of the present invention.

In another embodiment, one of various promoters is used
to express protein containing same. In one embodiment, an
Lm promoter is used, e.g. promoters for the genes hly, actA,
plcA, pleB and mpl, which encode the Listerial proteins
hemolysin, ActA, phosphotidylinositol-specific phospholi-
pase, phospholipase C, and metalloprotease, respectively.
Each possibility represents a separate embodiment of the
present invention.

In another embodiment, the construct or nucleic acid
molecule is expressed from an episomal vector, with an
endogenous nucleic acid sequence encoding an LLO, PEST
or ActA sequence or functional fragments thereof. In another
embodiment, the construct or nucleic acid molecule com-
prises a first and at least a second open reading frame each
encoding a first and at least a second polypeptide, wherein
the first and the at least second polypeptide each comprise a
heterologous antigen or a functional fragment thereof fused
to an endogenous PEST-containing polypeptide. Such com-
positions are described in U.S. patent application Ser. No.
13/290,783, incorporated by reference herein in its entirety.

In another embodiment, the PEST-containing polypeptide
is a truncated non-hemolytic LLO, an N-terminal ActA, or
a PEST sequence.

In another embodiment, provided herein is a recombinant
Listeria strain comprising an episomal recombinant nucleic
acid molecule, the nucleic acid molecule comprising a first
and at least a second open reading frame each encoding a
first and at least a second polypeptide, wherein the first and
the at least second polypeptide each comprise a heterologous
antigen or a functional fragment thereot fused to an endog-
enous PEST-containing polypeptide, wherein the nucleic
acid further comprises an open reading frame encoding a
plasmid replication control region. Such compositions are
described in U.S. patent application Ser. No. 13/290,783,
incorporated by reference herein in its entirety.

In another embodiment, methods and compositions of the
present invention utilize a homologue of a heterologous
antigen or LLO sequence of the present invention. The terms
“homology,” “homologous,” etc, when in reference to any
protein or peptide, refer in one embodiment, to a percentage
of amino acid residues in the candidate sequence that are
identical with the residues of a corresponding native poly-
peptide, after aligning the sequences and introducing gaps,
if necessary, to achieve the maximum percent homology,
and not considering any conservative substitutions as part of
the sequence identity. Methods and computer programs for
the alignment are well known in the art.

In another embodiment, the term “homology,” when in
reference to any nucleic acid sequence similarly indicates a
percentage of nucleotides in a candidate sequence that are
identical with the nucleotides of a corresponding native
nucleic acid sequence.

Homology is, in one embodiment, determined by com-
puter algorithm for sequence alignment, by methods well



US 9,463,227 B2

35

described in the art. For example, computer algorithm
analysis of nucleic acid sequence homology may include the
utilization of any number of software packages available,
such as, for example, the BLAST, DOMAIN, BEAUTY
(BLAST Enhanced Alignment Utility), GENPEPT and
TREMBL packages.

In another embodiment, “homology” refers to identity to
a sequence selected from SEQ ID No: 1-41 of greater than
about 70%. In another embodiment, “homology” refers to
identity to a sequence selected from SEQ ID No: 1-41 of
greater than about 70%. In another embodiment, the identity
is greater than about 75%. In another embodiment, the
identity is greater than about 78%. In another embodiment,
the identity is greater than about 80%. In another embodi-
ment, the identity is greater than about 82%. In another
embodiment, the identity is greater than about 83%. In
another embodiment, the identity is greater than about 85%.
In another embodiment, the identity is greater than about
87%. In another embodiment, the identity is greater than
about 88%. In another embodiment, the identity is greater
than about 90%. In another embodiment, the identity is
greater than about 92%. In another embodiment, the identity
is greater than about 93%. In another embodiment, the
identity is greater than about 95%. In another embodiment,
the identity is greater than about 96%. In another embodi-
ment, the identity is greater than about 97%. In another
embodiment, the identity is greater than 98%. In another
embodiment, the identity is greater than about 99%. In
another embodiment, the identity is 100%. Each possibility
represents a separate embodiment of the present invention.

In another embodiment, homology is determined via
determination of candidate sequence hybridization, methods
of which are well described in the art (See, for example,
“Nucleic Acid Hybridization” Hames, B. D., and Higgins S.
J., Eds. (1985); Sambrook et al., 2001, Molecular Cloning,
A Laboratory Manual, Cold Spring Harbor Press, N.Y.; and
Ausubel et al., 1989, Current Protocols in Molecular Biol-
ogy, Green Publishing Associates and Wiley Interscience,
N.Y.). For example methods of hybridization may be carried
out under moderate to stringent conditions, to the comple-
ment of a DNA encoding a native caspase peptide. Hybrid-
ization conditions being, for example, overnight incubation
at 42° C. in a solution comprising: 10-20% formamide,
5xSSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM
sodium phosphate (pH 7. 6), 5xDenhardt’s solution, 10%
dextran sulfate, and 20 pg/ml denatured, sheared salmon
sperm DNA.

In one embodiment of the present invention, “nucleic
acids” refers to a string of at least two base-sugar-phosphate
combinations. The term includes, in one embodiment, DNA
and RNA. “Nucleotides” refers, in one embodiment, to the
monomeric units of nucleic acid polymers. RNA may be, in
one embodiment, in the form of a tRNA (transfer RNA),
snRNA (small nuclear RNA), rRNA (ribosomal RNA),
mRNA (messenger RNA), anti-sense RNA, small inhibitory
RNA (siRNA), micro RNA (miRNA) and ribozymes. The
use of siRNA and miRNA has been described (Caudy A A
et al, Genes & Devel 16: 2491-96 and references cited
therein). DNA may be in form of plasmid DNA, viral DNA,
linear DNA, or chromosomal DNA or derivatives of these
groups. In addition, these forms of DNA and RNA may be
single, double, triple, or quadruple stranded. The term also
includes, in another embodiment, artificial nucleic acids that
may contain other types of backbones but the same bases. In
one embodiment, the artificial nucleic acid is a PNA (peptide
nucleic acid). PNA contain peptide backbones and nucleo-
tide bases and are able to bind, in one embodiment, to both

10

15

20

25

30

35

40

45

50

55

60

65

36

DNA and RNA molecules. In another embodiment, the
nucleotide is oxetane modified. In another embodiment, the
nucleotide is modified by replacement of one or more
phosphodiester bonds with a phosphorothioate bond. In
another embodiment, the artificial nucleic acid contains any
other variant of the phosphate backbone of native nucleic
acids known in the art. The use of phosphothiorate nucleic
acids and PNA are known to those skilled in the art, and are
described in, for example, Neilsen P E, Curr Opin Struct
Biol 9:353-57; and Raz N K et al Biochem Biophys Res
Commun 297:1075-84. The production and use of nucleic
acids is known to those skilled in art and is described, for
example, in Molecular Cloning, (2001), Sambrook and
Russell, eds. and Methods in Enzymology: Methods for
molecular cloning in eukaryotic cells (2003) Purchio and G.
C. Fareed. Each nucleic acid derivative represents a separate
embodiment of the present invention.

Protein and/or peptide homology for any amino acid
sequence listed herein is determined, in one embodiment, by
methods well described in the art, including immunoblot
analysis, or via computer algorithm analysis of amino acid
sequences, utilizing any of a number of software packages
available, via established methods. Some of these packages
may include the FASTA, BLAST, MPsrch or Scanps pack-
ages, and may employ the use of the Smith and Waterman
algorithms, and/or global/local or BLOCKS alignments for
analysis, for example. Each method of determining homol-
ogy represents a separate embodiment of the present inven-
tion.

In another embodiment, the present invention provides a
kit comprising a reagent utilized in performing a method of
the present invention. In another embodiment, the present
invention provides a kit comprising a composition, tool, or
instrument of the present invention.

The terms “contacting” or “administering,” in one
embodiment, refer to directly contacting the cancer cell or
tumor with a composition of the present invention. In
another embodiment, the terms refer to indirectly contacting
the cancer cell or tumor with a composition of the present
invention. In another embodiment, methods of the present
invention include methods in which the subject is contacted
with a composition of the present invention after which the
composition is brought in contact with the cancer cell or
tumor by diffusion or any other active transport or passive
transport process known in the art by which compounds
circulate within the body. Each possibility represents a
separate embodiment of the present invention.

In another embodiment, the terms “gene” and “recombi-
nant gene” refer to nucleic acid molecules comprising an
open reading frame encoding a polypeptide of the invention.
Such natural allelic variations can typically result in 1-5%
variance in the nucleotide sequence of a given gene. Alter-
native alleles can be identified by sequencing the gene of
interest in a number of different individuals or organisms.
This can be readily carried out by using hybridization probes
to identify the same genetic locus in a variety of individuals
or organisms. Any and all such nucleotide variations and
resulting amino acid polymorphisms or variations that are
the result of natural allelic variation and that do not alter the
functional activity are intended to be within the scope of the
invention.

Pharmaceutical Compositions
The pharmaceutical compositions containing vaccines

and compositions of the present invention are, in another
embodiment, administered to a subject by any method
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known to a person skilled in the art, such as parenterally,
paracancerally, transmucosally, transdermally, intramuscu-
larly, intravenously, intra-dermally, subcutaneously, intra-
peritonealy, intra-ventricularly, intra-cranially, intra-vagi-
nally or intra-tumorally.

In another embodiment of the methods and compositions
provided herein, the vaccines or compositions are adminis-
tered orally, and are thus formulated in a form suitable for
oral administration, i.e. as a solid or a liquid preparation.
Suitable solid oral formulations include tablets, capsules,
pills, granules, pellets and the like. Suitable liquid oral
formulations include solutions, suspensions, dispersions,
emulsions, oils and the like. In another embodiment of the
present invention, the active ingredient is formulated in a
capsule. In accordance with this embodiment, the composi-
tions of the present invention comprise, in addition to the
active compound and the inert carrier or diluent, a gelatin
capsule.

In another embodiment, the vaccines or compositions are
administered by intravenous, intra-arterial, or intra-muscular
injection of a liquid preparation. Suitable liquid formula-
tions include solutions, suspensions, dispersions, emulsions,
oils and the like. In one embodiment, the pharmaceutical
compositions are administered intravenously and are thus
formulated in a form suitable for intravenous administration.
In another embodiment, the pharmaceutical compositions
are administered intra-arterially and are thus formulated in a
form suitable for intra-arterial administration. In another
embodiment, the pharmaceutical compositions are adminis-
tered intra-muscularly and are thus formulated in a form
suitable for intra-muscular administration.

In one embodiment, the term “treating” refers to curing a
disease. In another embodiment, “treating” refers to pre-
venting a disease. In another embodiment, “treating” refers
to reducing the incidence of a disease. In another embodi-
ment, “treating” refers to ameliorating symptoms of a dis-
ease. In another embodiment, “treating” refers to inducing
remission. In another embodiment, “treating” refers to slow-
ing the progression of a disease. The terms “reducing”,
“suppressing” and “inhibiting” refer in another embodiment
to lessening or decreasing. Each possibility represents a
separate embodiment of the present invention.

The term “therapeutically effective dose” or “therapeutic
effective amount” means a dose that produces the desired
effect for which it is administered. The exact dose will be
ascertainable by one skilled in the art using known tech-
niques.

The term “about” as used herein means in quantitative
terms plus or minus 5%, or in another embodiment plus or
minus 10%, or in another embodiment plus or minus 15%,
or in another embodiment plus or minus 20%.

The term “subject” refers in one embodiment to a mam-
mal including a human in need of therapy for, or susceptible
1o, a condition or its sequelae. The subject may include dogs,
cats, pigs, cows, sheep, goats, horses, rats, and mice and
humans. The term “subject” does not exclude an individual
that is normal in all respects.

The following examples are presented in order to more
fully illustrate the preferred embodiments of the invention.
They should in no way be construed, however, as limiting
the broad scope of the invention.

EXAMPLES
Materials and Experimental Methods
Bacterial Strains, Transformation and Selection
E. coli strain MB2159 was used for transformations, using

standard protocols. Bacterial cells were prepared for elec-
troporation by washing with H,O.
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E. coli strain MB2159 (Strych U et al, FEMS Microbiol
Lett. 2001 Mar. 15; 196(2):93-8) is an alr (-)/dadX (-)
deficient mutant that is not able to synthesize D-alanine
racemase. Listeria strain Lm dal(-)/dat(-) (Lmdd) similarly
is not able to synthesize D-alanine racemase due to partial
deletions of the dal and the dat genes.

Plasmid Constructions

Using the published sequence of the plcA gene (Mengaud
et al., Infect. Immun. 1989 57, 3695-3701), PCR was used
to amplity the gene from chromosomal DNA. The amplified
product was then ligated into pAM401 using Sall- and
Xbal-generated DNA ends to generate pDP1462.

Plasmid pDP1500, containing prfA alone, was con-
structed by deleting the plcA gene, bases 429 to 1349
(Mengaud et al., supra), from pDP1462 after restriction with
Xbal and Pstl, treatment of the DNA ends with T4 DNA
polymerase to make them blunt, and intramolecular ligation.

Plasmid pDP1499, containing the plcA promoter and a
portion of the 3' end of plcA, was constructed by deleting a
plcA internal fragment, bases 428 to 882 (Mengaud et al.,
Infect. Immun 1989 57, 3695-3701), from pDP1339 after
restriction with Pst]l and Nsil and intramolecular ligation.

pDP1526 (pKSV7::AplcA) was constructed by a single
three-part ligation of pKSV7 restricted with BAMHI and
Xbal, the 468 bp Xbal and Nsil-generated fragment from
pAM401::plcA containing the 5' end of plcA (bases 882 to
1351; Mengaud et al,, supra) and, the 501 bp Pstl- and
BamHI-generated fragment from pAM401::plcA prfA con-
taining the 3' end of plcA (bases 77 to 429; Mengaud et al.,
supra).

The prfA promoter, bases 1-429 (Mengaud et al., supra),
was isolated by EcoRI and Pstl double digestion of
pDP1462 and the fragment was subsequently ligated into
EcoRI- and Pstl-restricted pKSV7 to generate pDP1498.
Two random HindIII-generated 10403S chromosomal DNA
fragments, approximately 3 kb in length, were ligated into
HindIII-restricted pKSV7, to generate the random integra-
tion control plasmids pDP1519 and pDP1521.
Construction of L. Monocytogenes Mutant Strains

L. monocytogenes strain DP-1.1387 was isolated as a
mutant with reduced lecithinase (PC-PLC) from a Tn917-
LTV3 bank of SLCC 5764, constructed as previously
described (Camilli et al., J. Bacteriol. 1990, 172, 3738-
3744). The site of Tn917-LTV3 insertion was determined by
sequencing one transposon-chromosomal DNA junction as
previously described (Sun et al., Infect. Immun 1990 58,
3770-3778). L. monocytogenes was transformed with plas-
mid DNA as previously described (Camilli et al., supra).
Selective pressure for maintenance of pAM401, pKSV7, and
their derivatives in L. monocytogenes was exerted in the
presence of 10 .mu.g of chloramphenicol per ml of media.
In addition, maintenance of pKSV7 derivatives required
growth at 30° C., a permissive temperature for plasmid
replication in Gram-positive bacteria.

Integration of pKSV7 derivatives into the L. monocyto-
genes chromosome occurred by homologous recombination
between L. monocytogenes DNA sequences on the plasmids
and their corresponding chromosomal alleles. Integration
mutants were enriched by growth for approximately 30
generations at 40° C., a non-permissive temperature for
pKSV7 replication, in Brain Heart Infusion (BHI) broth
containing 10 .mu.g chloramphenicol per ml of media. Each
integration strain was subsequently colony purified on BHI
agar containing 10 .mu.g chloramphenicol per ml of media
and incubated at 40° C. Southern blot analyses of chromo-
somal DNA isolated from each integration strain confirmed
the presence of the integrated plasmid.
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Construction of DP-1.1552 is achieved by integration of
the pKSV7 derivative, pDP1526, to generate a merodiploid
intermediate was done as described above. Spontaneous
excision of the integrated plasmid, through intramolecular
homologous recombination, occurred at a low frequency.
Bacteria in which the plasmid had excised from the chro-
mosome were enriched by growth at 30° C. in BHI broth for
approximately 50 generations. The nature of the selective
pressure during this step was not known but may be due to
a slight growth defect of strains containing integrated tem-
perature-sensitive plasmids. Approximately 50% of excision
events, i.e., those resulting from homologous recombination
between sequences 3' of the deletion, resulted in allelic
exchange of AplcA for the wild-type allele on the chromo-
some.

The excised plasmids were cured by growing the bacteria
at 40° C. in BHI for approximately 30 generations. Bacteria
cured of the plasmid retaining the AplcA allele on the
chromosome were identified by their failure to produce a
zone of turbidity surrounding colonies after growth on BHI
agar plates containing a 5 ml overlay of BHI agar/2.5% egg
yolk/2.5% phosphate-buffered saline (PBS) (BHI/egg yolk
agar). The turbid zones resulted from PI-PLC hydrolysis of
PI in the egg yolk, giving an insoluble diacylglycerol
precipitate. The correct plcA deletion on the L. monrocyto-
genes chromosome was confirmed by amplifying the deleted
allele using PCR and sequencing across the deletion.

Thus, PI-PLC negative mutants (plcA deletion mutants)
may be used according to the present invention to generate
attenuated L. monocytogenes vaccines. Other mutants were
made using the same method, namely, an actA deletion
mutant, a plcB deletion mutant, and a double mutant lacking
both plcA and plcB, all of which may also be used according
to the present disclosure to generate attenuated L. monocy-
togenes vaccines. Given the present disclosure, one skilled
in the art would be able to create other attenuated mutants in
addition to those mentioned above.

Construction of Lmdd

The dal gene was initially inactivated by means of a
double-allelic exchange between the chromosomal gene and
the temperature-sensitive shuttle plasmid pKSV7 (Smith K
et al, Biochimie 1992 July-August; 74(7-8):705-11) carrying
an erythromycin resistance gene between a 450-bp fragment
from the 5' end of the original 850-bp dal gene PCR product
and a 450-bp fragment from the 3' end of the dal gene PCR
product. Subsequently, a dal deletion mutant covering 82%
of the gene was constructed by a similar exchange reaction
with pKSV7 carrying homology regions from the 5' and 3'
ends of the intact gene (including sequences upstream and
downstream of the gene) surrounding the desired deletion.
PCR analysis was used to confirm the structure of this
chromosomal deletion.

The chromosomal dat gene was inactivated by a similar
allelic exchange reaction. pKSV7 was modified to carry
450-bp fragments derived by PCR from both the 5' and 3'
ends of the intact dat gene (including sequences upstream
and downstream of the gene). These two fragments were
ligated by appropriate PCR. Exchange of this construct into
the chromosome resulted in the deletion of 30% of the
central bases of the dat gene, which was confirmed by PCR
analysis.

Bacterial Culture and In Vivo Passaging of Listeria

E. coli were cultured following standard methods. Listeria
were grown at 37° C., 250 rpm shaking in LB media (Difco,
Detroit, Mich.). +50 pg/ml streptomycin, and harvested
during exponential growth phase. For Lm-LLOE7, 37 ug/ml
chloramphenicol was added to the media. For growth kinet-
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ics determinations, bacteria were grown for 16 hours in 10
ml of LB+ antibiotics. The OD, ,,,, Was measured and
culture densities were normalized between the strains. The
culture was diluted 1:50 into LB+ suitable antibiotics and
D-alanine if applicable.

Passaging of Lm in Mice

1x10® CFU were injected intraperitoneally (ip.) into
C57BL/6 mice. On day three, spleens were isolated and
homogenized in PBS. An aliquot of the spleen suspension
was plated on LB plates with antibiotics as applicable.
Several colonies were expanded and mixed to establish an
injection stock.

Construction of Antibiotic Resistance Factor Free Plasmid
pTV3

Construction of p60-dal Cassette.

The first step in the construction of the antibiotic resis-
tance gene-free vector was construction of a fusion of a
truncated p60 promoter to the dal gene. The Lm alanine
racemase (dal) gene (forward primer: 5'-CCA TGG TGA
CAG GCT GGC ATC-3"; SEQ ID NO: 20) (reverse primer:
5'-GCT AGC CTA ATG GAT GTA TTT TCT AGG-3'; SEQ
ID NO: 21) and a minimal p60 promoter sequence (forward
primer: 5-TTA ATT AAC AAA TAG TTG GTA TAG
TCC-3"; SEQ ID No: 22) (reverse primer: 5'-GAC GAT
GCC AGC CTG TCA CCA TGG AAA ACT CCT CTC-3
SEQ ID No: 23) were isolated by PCR amplification from
the genome of Lm strain 10403S . The primers introduced a
Pad site upstream of the p60 sequence, an Nhel site down-
stream of the dal sequence (restriction sites in bold type),
and an overlapping dal sequence (the first 18 bp) down-
stream of the p60 promoter for subsequent fusion of p60 and
dal by splice overlap extension (SOE)-PCR. The sequence
of the truncated p60 promoter was: CAAATAGTTGG-
TATAGTCCTCTTTAGCCTTTGGAGTATTATCTCAT-
CATTTGTTTTIT TAGGTGAAAACTGGGTAAACTTAG-
TATTATCAATATAAAATTAATTCTCAAATAC
TTAATTACGTACTGGGATTTTCTGAAAAAAGAGAG-
GAGTTTTCC (SEQ ID NO: 24 Kohler et al, J Bacteriol
173: 4668-74,1991). Using SOE-PCR, the p60 and dal PCR
products were fused and cloned into cloning vector pCR2.1
(Invitrogen, La Jolla, Calif.).

Removal of Antibiotic Resistance Genes from pGGSS.

The subsequent cloning strategy for removing the
Chloramphenicol acetyltransferase (CAT) genes from
pGGSS5 and introducing the p60-dal cassette also intermit-
tently resulted in the removal of the gram-positive replica-
tion region (oriRep; Brantl et al, Nucleic Acid Res 18:
4783-4790, 1990). In order to re-introduce the gram-positive
oriRep, the oriRep was PCR-amplified from pGGS5S, using
a S'-primer that added a Narl/Ehel site upstream of the
sequence (GGCGCCACTAACTCAACGCTAGTAG, SEQ
ID NO: 25) and a 3'-primer that added a Nhel site down-
stream of the sequence (GCTAGCCAG-
CAAAGAAAAACAAACACG, SEQID NO: 26). The PCR
product was cloned into cloning vector pCR2.1 and
sequence verified.

In order to incorporate the p60-dal sequence into the
pGGSS5 vector, the p60-dal expression cassette was excised
from pCR-p60dal by Pacl/Nhel double digestion. The rep-
lication region for gram-positive bacteria in pGGSS was
amplified from pCR-oriRep by PCR (primer 1,5'-GTC GAC
GGT CAC CGG CGC CAC TAA CTC AAC GCT AGT
AG-3"; SEQ ID No: 27); (primer 2,5'-TTA ATT AAG CTA
GCC AGC AAA GAA AAA CAA ACA CG-3";, SEQ ID No:
28) to introduce additional restriction sites for Ehel and
Nhel. The PCR product was ligated into pCR2.1-TOPO
(Invitrogen, Carlsbad, Calif.), and the sequence was verified.
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The replication region was excised by Ehel/Nhel digestion,
and vector pGGS5 was double digested with Ehel and Nhel,
removing both CAT genes from the plasmid simultaneously.
The two inserts, p60-dal and oriRep, and the pGGSS frag-
ment were ligated together, yielding pTV3 (FIG. 1). pTV3
also contains a prfA (pathogenicity regulating factor A)
gene. This gene is not necessary for the function of pTV3,
but can be used in situations wherein an additional selected
marker is required or desired.

Preparation of DNA for Real-Time PCR

Total Listeria DNA was prepared using the Masterpure®
Total DNA kit (Epicentre, Madison, Wis.). Listeria were
cultured for 24 hours at 37° C. and shaken at 250 rpm in 25
ml of Luria-Bertoni broth (L.B). Bacterial cells were pelleted
by centrifugation, resuspended in PBS supplemented with 5
mg/ml of lysozyme and incubated for 20 minutes at 37° C.,
after which DNA was isolated.

In order to obtain standard target DNA for real-time PCR,
the LLO-E7 gene was PCR amplified from pGGSS (5'-
ATGAAAAAAATAATGCTAGTTTTTATTAC-3' (SEQ ID
NO: 29); 5-GCGGCCGCTTAATGATGATGATGATGAT-
GTGGTTTCTG AGAACAGATG-3' (SEQ ID NO: 30)) and
cloned into vector pETbluel (Novagen, San Diego, Calif.).
Similarly, the plcA amplicon was cloned into pCR2.1. E.
coli were transformed with pET-LLOE7 and pCR-plcA,
respectively, and purified plasmid DNA was prepared for use
in real-time PCR.

Real-Time PCR

Tagman primer-probe sets (Applied Biosystems, Foster
City, Calif.) were designed using the ABI PrimerExpress
software (Applied Biosystems) with E7 as a plasmid target,
using the following primers: 5'-GCAAGTGTGACTC-
TACGCTTCG-3' (SEQ ID NO: 31); 5-TGCCCATTAACA-
GGTCTTCCA-3' (SEQ ID NO: 32); 5-FAM-TGCGTA
CAAAGCACACACGTAGACATTCGTAC-TAMRA-3'
(SEQ ID NO: 33) and the one-copy gene plcA
(TGACATCGTTTGTGTTTGAGCTAG-3' (SEQ ID NO:
34, 5'-GCAGCGCTCTCTATACCAGGTAC-3' (SEQ ID
NO: 35); 5-TET-TTAATGTCCATGTTA TGTCTCCGT-
TATAGCTCATCGTA-TAMRA-3'; SEQ ID NO: 36) as a
Listeria genome target.

0.4 uM primer and 0.05 mM probe were mixed with PuRE
Taqg RTG PCR beads (Amersham, Piscataway, N.J.) as
recommended by the manufacturer. Standard curves were
prepared for each target with purified plasmid DNA, pET-
LLOE7 and pCR-plcA (internal standard) and used to cal-
culate gene copy numbers in unknown samples. Mean ratios
of E7 copies/plcA copies were calculated based on the
standard curves and calibrated by dividing the results for
Lmdd-TV3 and Lm-LLOE7 with the results from Lm-E7, a
Listeria strain with a single copy of the E7 gene integrated
into the genome. All samples were run in triplicate in each
qPCR assay which was repeated three times. Variation
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between samples was analyzed by Two-Way ANOVA using
the KyPlot software. Results were deemed statistically sig-
nificant if p<0.05.
Growth Measurements

Bacteria were grown at 37° C., 250 rpm shaking in Luria
Bertani (LB) Medium+/-100 micrograms (ug)/ml D-alanine
and/or 37 pg/ml chloramphenicol. The starting inoculum
was adjusted based on ODg,, nm measurements to be the
same for all strains.
Hemolytic Lysis Assay

4x10° CFU of Listeria were thawed, pelleted by centrifu-
gation (1 minute, 14000 rpm) and resuspended in 100 pl
PBS, pH 5.5 with 1 M cysteine. Bacteria were serially
diluted 1:2 and incubated for 45 minutes at 37° C. in order
to activate secreted LLO. Defibrinated total sheep blood
(Cedarlane, Hornby, Ontario, Canada) was washed twice
with 5 volumes of PBS and three to four times with 6
volumes of PBS-Cysteine until the supernatant remained
clear, pelleting cells at 3000xg for 8 minutes between wash
steps, then resuspended to a final concentration of 10% (v/v)
in PBS-Cysteine. 100 ill of 10% washed blood cells were
mixed with 100 pl of Listeria suspension and incubated for
additional 45 minutes at 37° C. Un-lysed blood cells were
then pelleted by centrifugation (10 minutes, 1000xg). 100 ill
of supernatant was transferred into a new plate and the
ODs;q ,,., Was determined and plotted against the sample
dilution.
Therapeutic Efficacy of Lmdd-Tv3

10° TC-1 (ATCC, Manassas, Va.) were implanted subcu-
taneously in C57BL/6 mice (n=8) and allowed to grow for
about 7 days, after which tumors were palpable. TC-1 is a
C57BL/6 epithelial cell line that was immortalized with
HPV E6 and E7 and transformed with activated ras, which
forms tumors upon subcutaneous implantation. Mice were
immunized with 0.1 LD, of the appropriate Listeria strain
on days 7 and 14 following implantation of tumor cells. A
non-immunized control group (naive) was also included.
Tumor growth was measured with electronic calipers.
Construction of LmddAinlC

The deletions in the Listeria chromosome are introduced
by homologous recombination between a target gene and
homologous sequences present on the plasmid, which is
temperature sensitive for DNA replication. After transfor-
mation of plasmid into the host, the integration of the
plasmid into the chromosome by single crossover event is
selected during growth at non-permissive temperature (42°
C.) while maintaining selective pressure. Subsequent growth
of co-integrates at permissive temperatures (30° C.) leads to
second recombination event, resulting in their resolution.

To create deletion mutant, DNA fragments that are present
upstream and downstream of inlC region (indicated in the
figure is amplified by PCR (indicated in FIGS. 2 and 3 and
respective SEQ 1D NO: 37 and SEQ ID NO: 38).

(SEQ ID NO: 37)

atggcgegggatggtatactatacaagegtatggttcaaaaagatactttgaattaagaagtacaataaagttaacttca

ttagacaaaaagaaaaaacaaggaagaatagtacatagttataaatacttggagagtgaggtgtaatatgggggcagctgatttt

ggggtttcatatatgtagtttcaagattagecattgttgeggeagtagtttacttcttatacttattgagaaaaattgcaaataaatagaa

aaaaagccttgtcaaacgaggcetttttttatgecaaaaaatacgacgaatgaagecatgtgagacaatttggaatagcagacaaca

aggaaggtagaacatgttttgaaaaatttactgattttcgattattattaacgcttgttaatttaaacatectettatttttgetaacatataag

tatacaaagggacataaaaaggttaacagegtttgttaaataggaagtatatgaaaatcctcttttgtgatctaaatttatttttaagga

gtggagaatgttgaaaaaaaataattggttacaaaatgcagtaatagcaatgctagtgttaattgtaggtctgtgecattaatatg
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-continued
ggttctggaacaaaagtacaagetgagagtattcaacgaccaacgcctattaaccaagttttteccagateceggectagegaat
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gcagtgaaacaaaatttagggaagcaaagtgttacagaccttgtatcacaaaaggaactatctggagtacaaaatttcaatgg

agataatagcaacattcaatctcttgegggaatgcaatttttcactaatttaaaagaacttcatctatcccataatcaaataagtyg

accttagtecctttaaaggatctaactaagttagaagagctatectgtgaatagaaacagactgaaaaatttaaacggaattccaa

gtgettgtttatctegettgtttttagataacaacgaactcagagatactgactegettattcatttgaaaaatctagaaatcttatet

attcgtaataataagttaaaaagtattgtgatgettggttttttatcaaaactagaggtattagatttgecatggtaatgaaataaca

aatacaggtggactaactagattgaagaaagttaactggatagatttaactggtcagaaatgtgtgaatgaaccagtaaaata

ccaaccagaattgtatataacaaatactgtcaaagacccagatggaagatggatatctccatattacatcagtaatggtgggag

ttatgtagatggttgtgtectgtgggaattgecagtttatacagatgaagtaagctataagtttagecgaatatataaacgttgggg

agactgaggctatatttgatggaacagttacacaacctatcaagaattaggacttgtgcacacctgtatactttgagctctegtataat

cacgagagctttttaaatatgtaagtcttaattatctettgacaaaaagaacgatattcgtataaggttaccaagagatgaagaaactatttta

tttacaattcaccttgacaccaaaaactccatatgatatagtaaataaggttattaaacaagaaagaagaagcaacccegettetegectegt

taacacgaacgttttcaggcaaaaaattcaaactttegtegegtagettacgegattttgaatgtgegggattgetgaaaagcagecegttt

ttttatggcctecgaacgaatgagttagecaggecgeagatttgaacagetattttetatettgttgtaacaaaattaagtggaggtggeteac

cattagcaaagacatgttggtaaacgatgggattegtgecacgtgaagtaagattgategaccaagacggtgaacaattaggegtgaaga

gtaaaatcgatgcgcttcaaattgctgaaaaggctaatcttgatetagtgettgttgetecaacagegaaacegecagtagetegta.

(SEQ ID NO: 38)

GAATTCatggcgegggatggtatactatacaagegtatggttcaaaaagatactttgaattaagaagtacaataaa

gttaacttcattagacaaaaagaaaaaacaaggaagaatagtacatagttataaatacttggagagtgaggtgtaatatgggggce

agctgatttttggggtttcatatatgtagtttcaagattagecattgttgeggeagtagtttacttcttatacttattgagaaaaattgcaaa

taaatagaaaaaaagccttgtcaaacgaggctttttttatgeaaaaaatacgacgaatgaagecatgtgagacaatttggaatage

agacaacaaggaaggtagaacatgttttgaaaaatttactgattttcgattattattaacgettgttaatttaaacatctettattttgeta

acatataagtatacaaagggacataaaaaggttaacagegtttygttaaataggaagtatatgaaaatcctetttgtgtttetaaattta

tttttaaggagtggagaGGATCCggacttgtgcacacctgtatactttgagctectegtataatcacgagagetttttaaatatgtaagte

ttaattatctcttgacaaaaagaacgtttattegtataaggttaccaagagatgaagaaactattttatttacaattcaccttgacaccaaaaac

tccatatgatatagtaaataaggttattaaacaagaaagaagaagcaacccgcettetegectegttaacacgaacgttttcaggcaaaaaa

ttcaaactttcgtegegtagettacgegattttgaatgtgegggattgetgaaaagcagecegtttttttatggectecgaacgaatgagtta

gecaggccgcagatttgaacagetattttetatettgttgtaacaaaattaagtggaggtggetcaccattagcaaagacatgttggtaaacy

atgggattcgtgcacgtgaagtaagattgatcgaccaagacggtgaacaattaggegtgaagagtaaaatcgatgegettcaaattgety

aaaaggctaatcttgatctagtgcttgttgctccaacagcgaaaccgccagtagetcegtalTGCAG.

The inl C gene codes for 296 amino acid protein and the 50 grated plasmid copy are selected by growth under Cm

entire gene for this protein is deleted. The DNA fragments,
DNA-up and DNA-down are amplified by PCR and cloned
sequentially in the plasmid, pNEB193 using restriction
enzyme sites EcoRI/BamHI and BamH1/Pst1, respectively
as indicated in FIG. 3. The DNA cassette up-down (EcoR1
and Pstl fragment) is excised and further cloned in the
temperature sensitive shuttle vector, pKSV7. After cloning,
the plasmid, pKSV7/up-down is transformed in the strain
Lm dal dat actA and the resulting colonies are tested for the
presence of plasmid using colony PCR.

For homologous recombination, the bacteria is cultured
repeatedly for 5 days under chloramphenicol (Cm) selection
at 30° C., conditions permissive for plasmid replication and
during which time random DNA crossover events occur.
This incubation step allowed for the integration of the
shuttle plasmid into the genome, thus initially transferring
Cm resistance. Bacteria containing a chromosomally inte-
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selective pressure during a temperature shift to 42° C.,
conditions not permissive for plasmid replication. The colo-
nies are verified for the first recombination using PCR and
the growth temperature are again shifted to 30° C. to allow
for a second DNA cross over occurring at homologous sites,
thus excising unwanted plasmid sequences and leaving only
the recombinant gene copy behind in the Lm chromosome.
By employing an additional temperature shift to 42° C., the
excised plasmid is prohibited from replicating, so that it is
diluted out during expansion of the bacterial culture. Fur-
thermore, subsequent replica plating is used for selecting the
Cm sensitive bacteria. The Cm sensitive colonies are ana-
lyzed for the deletion of inl C gene using colony PCR.
Generation of an ActA Deletion Mutant

The strain Lm dal dat (Lmdd) was attenuated by the
irreversible deletion of the virulence factor, ActA. An in
frame deletion of actA in the L mdaldat (Lmdd) background
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was constructed to avoid any polar effects on the expression
of downstream genes. The Lm dal dat AactA contains the
first 19 amino acids at the N-terminal and 28 amino acid
residues of the C-terminal with a deletion of 591 amino acids
of ActA. The deletion of the gene into the chromosomal spot
was verified using primers that anneal external to the actA
deletion region. These are primers 3 (Adv 305-tgggatggc-
caagaaattc) (SEQ ID NO: 39) and 4 (Adv304-ctaccatgtcttc-
cgttgettg) (SEQ ID NO: 40) as shown in the FIG. 4. The
PCR analysis was performed on the chromosomal DNA
isolated from L mdd and Lm-ddAactA. The sizes of the DNA
fragments after amplification with two different set of primer
pairs 1, 2 and 3, 4 in Lm-dd chromosomal DNA was
expected to be 3.0 Kb and 3.4 Kb. However, for the
Lm-ddAactA the expected sizes of PCR using the primer
pairs 1, 2 and 3, 4 was 1.2 Kb and 1.6 Kb. Thus, PCR
analysis in FIG. 3 confirms that 1.8 kb region of actA was
deleted in the strain, Lm-ddAactA. DNA sequencing was
also performed on PCR products to confirm the deletion of
actA containing region in the strain, Lm-ddAactA (FIG. 5).
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Transwell Migration Assay:

This assay is done to determine if there is an increase in
the migration of neutrophils following infection of bone
marrow derived macrophages or dendritic cells with the inlC
deletion strain. Bone marrow-derived macrophages or den-
dritic cells are isolated from mice such as C57BL/6 and are
infected with the inlC deletion mutants or control Listeria.
Using infected cells the transwell assay is set up using
corning costar Transwell plates. The assay is initially stan-
dardize using 3, 5, or 8 micron pore transwell plates. To test
neutrophil migration, plate the infected APCs in the bottom
of the plate and the neutrophils in the top of the well in the
chamber. At different time points the cells are counted to
determine the number of neutrophils that have migrated to
the bottom.

Therapeutic Efficacy of the Lm Dal Dat actA AinlC Mutant:

To determine the therapeutic efficacy of inlC mutant,
human Prostate specific antigen (PSA) is used as tumor
antigen as proof of concept. The backbone L.m dal dat actA
inlC are transformed with the plasmid, pAdv142 that con-

(SEQ ID NO: 41)

gegecaaatcattggttgattggtgaggatgtetgtgtgegtgggtegegagatgggegaataagaagecattaaagatecty

acaaatataatcaagcggctcatatgaaagattacgaatcgatccactcacagaggaaggcgactggggeggagttcattataatagty

gtatcccgaataaagcagcectataatactatcactaaacttggaaaagaaaaaacagaacagcatattacgegecttaaagtactatttaa

cgaaaaaatcccagtttaccgatgegaaaaaagegettcaacaagcagegaaagatttatatggtgaagatgettctaaaaaagttgety

aagcttgggaagcagttggggttaactgattaacaaatgttagagaaaaattaattctccaagtgatattcttaaaataattcatgaatatttttt

cttatattagctaattaagaagataactaactgctaatccaatttttaacggaacaaattagtgaaaatgaaggccgaattttecttgttctaaa

aaggttgtattagcegtatcacgaggagggagtataagtgggattaaacagatttatgegtgegatgatggtggttttcattactgecaatt

geattacgattaaccccgacgtegacccatacgacgttaattcttgecaatgttagetattggegtgttetetttaggggegtttatcaaaa

ttattcaattaagaaaaaataattaaaaacacagaacgaaagaaaaagtgaggtgaatgatatgaaattcaaaaaggtggttctaggta

tgtgcttgatcgcaagtgttetagtettteeggtaacgataaaagcaaatgectgttgtgatgaatacttacaaacaccegecageteegeat

gatattgacagcaaattaccacataaacttagttggtcecgeggataaccegacaaatactgacgtaaatacgcactattggetttttaaaca

agcggaaaaaatactagctaaagatgtaaatcatatgegagetaatttaatgaatgaacttaaaaaattcgataaacaaatagcetcaagga

atatatgatgcggatcataaaaatccatattatgatactagtacatttttatctcatttttataatectgatagagataatacttatttgecgggtttt

gctaatgcgaaaataacaggagcaaagtatttcaatcaatceggtgactgattaccgagaagggaa.

Production of Inflammatory Cytokines:

Macrophages such as RAW 264.7 are infected with dif-
ferent Listeria backbones such as Lm dal dat, Lm dal dat
actA, Lm dal dat actA AinlC and Lm dal dat AinlC and
supernatant is harvested at different time points to quantity
the level of various cytokines using different ELISA based
kits. The cytokines that are quantified include IFN-y, TNF-a
and IL-6.

In Vivo Cytokine Production:

To measure the in vivo cytokine production and recruit-
ment of neutrophils, C57BL/6 mice are injected intraperi-
toneally with different 10® CFU of inlC mutant, Listeria
control or an equivalent volume of saline. After 12 h mice
are killed and peritoneal cavities are washed with 2 mL of
PBS. The peritoneal washes are examined for bacterial load
after plating on growth medium and analysis of proinflam-
matory cytokines such as MIP-1a, KC, MCP etc. Using flow
cytometry the number of neutrophils and macrophages is
determine after staining with markers such as Gr-1, CD11b
and F4/80 and further these populations are quantified using
CellQuest software.
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tains expression cassette for human PSA resulting in Lmd-
dAinlC142. The strain LmddAinlC142 is characterized for
the expression and secretion of fusion protein, tLLO-PSA.
Further the strain LmddAinlC142 are passaged twice in vivo
in mice and the colonies obtained after two in vivo passages
are examined for the expression and secretion of fusion
protein, tLLO-PSA. The vaccine working stock are prepared
from the colonies obtained after second in vivo passage and
this are used for the assessment of therapeutic effects and
immunogenicity.

Impact on Tumor Microenvironment:

The ability of LmddAinlC142, LmddA142 and other
control strains to cause infiltration of immune cells in the
tumor microenvironment are determined. In this study mice
are inoculated with 1x10° TPSA23 tumor cells on day 0 and
are vaccinated on day 7, 14 and 21 with 10® CFU of
LmddAinlC142, LmddA142 and other control strains.
Tumors are harvested on day 28 and processed for further
staining with different cell surface markers such as Gr-1,
CD11b, CD3, CD4, CD8, CD25, Foxp3, NK1.1 and CD62L.
Using these markers different cell populations that are
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examined include macrophages (CD11b*), NK cells
(NK1.1%), neutrophils (Gr-1* CD11b*), myeloid derived
suppressor cells (MDSCs) (Gr-1* CD11b*), regulatory T
cells (CD4" CD25* Foxp3*) and effector T cells (CD8*
CD3*+“P62L/*"). Further effector T cells are characterized
for their functional ability to produce effector cytokines such
as IFN-y, TNF-a and IL-2. The intratumoral regulatory T
cells and MDSCs are tested for their ability to cause sup-
pression of T cell proliferation.
Listeria Immunization and S. mansoni Infection

Female (6-8 weeks 0ld) BALB/c mice were maintained as
naive (un-infected) or infected with S. mansoni. For infec-
tion, mice were injected 1.p. with 50 cercariae. Eight weeks
later, both infected and un-infected mice were immunized
i.p. (100 pg/injection) with 0.1 LD50 Lm-gag, 0.2 LD50
Lm-gag, or 1 LD50 Lm-gag, or orally with 10 LD50 Lm-gag
or 100 LD50 Lm-gag. Two weeks later, some groups of mice
were boosted ip. with 0.1 LD50 Lm-gag or 0.2 LD50
Lm-gag or orally with 10 LD50 Lm-gag or 100 LD50
Lm-gag in a similar manner. Lm-E7 was used as a negative
control. Two weeks after the final immunization, the T-cell
immune response was analyzed as described below. Infec-
tion was confirmed at the time of sacrifice by examining the
mice for the presence of worms, liver eggs and hepatosple-
nomegally.

MDSC and Treg Function

Tumors were implanted in mice on the flank or a physi-
ological site depending on the tumor model. After 7 days,
mice were then vaccinated, the initial vaccination day
depends on the tumor model being used. The mice were then
administered a booster vaccine one week after the vaccine
was given.

Mice were then sacrificed and tumors and spleen were
harvested 1 week after the boost or, in the case of an
aggressive tumor model, 3-4 days after the boost. Five days
before harvesting the tumor, non-tumor bearing mice were
vaccinated to use for responder T cells. Splenocytes were
prepared using standard methodology.

Briefly, single cell suspensions of both the tumors and the
spleens were prepared. Spleens were crushed manually and
red blood cells were lysed. Tumors were minced and incu-
bated with collagenase/DNase. Alternatively, the GEN-
TLEMACS™ dissociator was used with the tumor disso-
ciation kit.

MDSCs were purified from tumors and spleens using a
Miltenyi kit and columns or the autoMACs separator. Cells
were then counted.

Single cell suspension was prepared and the red blood
cells were lysed. Responder T cells were then labeled with
CFSE.

Cells were plated together at a 2:1 ratio of responder T
cells (from all division cycle stages) to MDSCs at a density
of 1x10° T cells per well in 96 well plates. Responder T cells
were then stimulated with either the appropriate peptide
(PSA OR CA9) or non-specifically with PMA/ionomycin.
Cells were incubated in the dark for 2 days at 37° C. with 5%
CO,. Two days later, the cells were stained for FACS and
analyzed on a FACS machine.

Analysis of T-Cell Responses

For cytokine analysis by ELISA, splenocytes were har-
vested and plated at 1.5 million cells per well in 48-well
plates in the presence of media, SEA or conA (as a positive
control). After incubation for 72 hours, supernatants were
harvested and analyzed for cytokine level by ELISA (BD).
For antigen-specific IFN-y ELISpot, splenocytes were har-
vested and plated at 300K and 150K cells per well in IFN-y
ELISpot plates in the presence of media, specific CTL
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peptide, irrelevant peptide, specific helper peptide or conA
(as a positive control). After incubation for 20 hours,
ELISpots (BD) were performed and spots counted by the
Immunospot analyzer (C.T.L.). Number of spots per million
splenocytes were graphed.

Splenocytes were counted using a Coulter Counter, Z1.
The frequency of IFN-y producing CD8+ T cells after
re-stimulation with gag-CTL, gag-helper, medium, an irrel-
evant antigen, and con A (positive control) was determined
using a standard IFN-y-based ELISPOT assay.

Briefly, IFN-y was detected using the mAb R46-A2 at 5
mg/ml and polyclonal rabbit anti-IFN-y used at an optimal
dilution (kindly provided by Dr. Phillip Scott, University of
Pennsylvania, Philadelphia, Pa.). The levels of IFN-y were
calculated by comparison with a standard curve using
murine rIFN-y (Life Technologies, Gaithersburg, Md.).
Plates were developed using a peroxidase-conjugated goat
anti-rabbit IgG Ab (IFN-y). Plates were then read at 405 nm.
The lower limit of detection for the assays was 30 pg/ml.

RESULTS
Example 1

A Plasmid Containing an Amino Acid Metabolism
Enzyme Instead of an Antibiotic Resistance Gene is
Retained in £. Coli and Lm Both In Vitro and In
Vivo

An auxotroph complementation system based on D-ala-
nine racemase was utilized to mediate plasmid retention in
Lm without the use of an antibiotic resistance gene. E. coli
strain MB2159 is an alr (-)/dadX (-) deficient mutant that
is not able to synthesize D-alanine racemase. Listeria strain
Lm dal(-)/dat(-) (Lmdd) similarly is not able to synthesize
D-alanine racemase due to partial deletions of the dal and the
dat genes. Plasmid pGGS5S, which is based on E. coli-
Listeria shuttle vector pAM401, was modified by removing
both CAT genes and replacing them with a p60-dal expres-
sion cassette under control of the Listeria p60 promoter to
generate pTV3 (FIG. 1). DNA was purified from several
colonies.

Example 2

Plasmids Containing a Metabolic Enzyme Do not
Increase The Virulence of Bacteria

As virulence is linked to LLO function, the hemolytic
lysis activity between Lmdd-TV3 and Lm-LLOE7 was
compared. This assay tests LLLO function by lysis of red
blood cells and can be performed with culture supernatant,
purified LLO or bacterial cells. Lmdd-TV3 displayed higher
hemolytic lysis activity than Lm-LLOE7.

In vivo virulence was also measured by determining LD,
values, a more direct, and therefore accurate, means of
measuring virulence. The LDs, of Lmdd-TV3 (0.75x10%)
was very close to that of Lm-LLOE7 (1x10°), showing that
plasmids containing a metabolic enzyme do not increase the
virulence of bacteria.

Example 3

Induction of Anti-Tumor Immunity by Plasmids
Containing a Metabolic Enzyme

Efficacy of the metabolic enzyme-containing plasmid as a
cancer vaccine was determined in a tumor regression model.
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The TC-1 cell line model, which is well characterized for
HPV vaccine development and which allowed for a con-
trolled comparison of the regression of established tumors of
similar size after immunization with Lmdd-TV3 or Lm-
LLOE7, was used. In two separate experiments, immuniza-
tion of mice with Lmdd-TV3 and Lm-LLOE7 resulted in
similar tumor regression (FIG. 6) with no statistically sig-
nificant difference (p<0.05) between vaccinated groups. All
immunized mice were still alive after 63 days, whereas
non-immunized mice had to be sacrificed when their tumors
reached 20 mm diameter. Cured mice remained tumor-free
until the termination of the experiment.

Thus, metabolic enzyme-containing plasmids are effica-
cious as a therapeutic cancer vaccine. Because immune
responses required for a therapeutic cancer vaccine are
stronger than those required for a prophylactic cancer vac-
cine, these results demonstrate utility as well for a prophy-
lactic cancer vaccine.

Example 4

inlC-Deletion Mutant Generate Significantly High
Levels of the Chemokines and Cytokines

inlC deletion mutant generates significantly high levels of
the chemokines such as MIP-1a, KC (mouse homolog of
1L-8), MCP resulting in infiltration of neutrophils and leu-
kocytes towards the site of infection. Thus when different
Listeria strains are administered intraperitoneally, the inlC
mutant demonstrate an increase production of these cytok-
ines and chemokines, which attract neutrophils and macro-
phages in the peritoneal fluid obtained 12 h after injection.
Further, inlC deletion mutant generate significantly high
levels of the inflammatory cytokines when compared to
control strains.

Example 5
inlC-Deletion Mutants Induce Neutrophil Migration

The macrophages infected with inlC deletion mutant
show significant increase in the migration of neutrophils at
different time points when compared to other control strains.
The results of this experiment strongly support the ability of
this strain to attract immune cells such as neutrophils during
infection.

Example 6

inlC-Deletion Mutants Effect a Therapeutic
Anti-Tumor Response

The results of anti-tumor studies using both LmddA142
and LmddAinlC142 are very comparable to each other and
therapeutic regression of tumors is observed. Further, two
doses of LmddAinlC142 are comparable to three doses of
the strain LmddA142 because of its ability to generate high
levels of innate responses and increased secretion of proin-
flammatory cytokines.

At day 0 tumors were implanted in mice. At day 7 mice
were vaccinated with Lmdda-E7 or LmddA-PSA. At day 14
tumors were harvested and MDSCs and Treg percentages
and numbers were measured for vaccinated and naive
groups. It was found that there is a decrease in the percent-
ages of both MDSC and Tregs in the tumors of Listeria-
treated mice, whereas the same effect is not observed in the
spleens or the draining lymph nodes (TLDN) (FIG. 7).

Isolated splenocytes and tumor-infiltrating lymphocytes
(TILs) extracted from tumor bearing mice in the above
experiment were pooled and stained for CD3, and CD8 to
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elucidate the effect of immunization with Lm-LLO-E7,
Lm-LLO-PSA and Lm-LLO-CA9, Lm-LLO-Her2 (FIG.
8-20) on the presence of MDSCs and Tregs (both splenic and
tumoral MDSCs and Tregs) in the tumor. Each column
represents the % of T cell population at a particular cell
division stage and is subgrouped under a particular treatment
group (naive, peptide-CA9 or PSA-treated, no MDSC/Treg,
and no MDSC+PMA/ionomycin) (see FIGS. 8-20).
Analysis of Cells in the Blood of Tumor-Bearing Mice

Blood from tumor-bearing mice was analyzed for the
percentages of Tregs and MDSCs present. There is a
decrease in both MDSC and Tregs in the blood of mice after
Lm vaccination.

Example 7

Suppressor Cell Function after Listeria Vaccine
Treatment

At day O tumors were implanted in mice. At day 7 mice
were vaccinated with Lmdda-E7 or LmddA-PSA. At day 14
tumors were harvested and MDSCs and Treg percentages
and numbers were measured for vaccinated and naive
groups. It was found that there is a decrease in the percent-
ages of both MDSC and Tregs in the tumors of Listeria-
treated mice, whereas the same effect is not observed in the
spleens or the draining lymph nodes (TLDN) (FIG. 7).

Isolated splenocytes and tumor-infiltrating lymphocytes
(TILs) extracted from tumor bearing mice in the above
experiment were pooled and stained for CD3, and CD8 to
elucidate the effect of immunization with Lm-LLO-E7,
Lm-LLO-PSA and Lm-LLO-CA9, Lm-LLO-Her2 (FIG.
8-20) on the presence of MDSCs and Tregs (both splenic and
tumoral MDSCs and Tregs) in the tumor. Each column
represents the % of T cell population at a particular cell
division stage and is subgrouped under a particular treatment
group (naive, peptide-CA9 or PSA-treated, no MDSC/Treg,
and no MDSC+PMA/ionomycin) (see FIGS. 8-20).
Analysis of Cells in the Blood of Tumor-Bearing Mice

Blood from tumor-bearing mice was analyzed for the
percentages of Tregs and MDSCs present. There is a
decrease in both MDSC and Tregs in the blood of mice after
Lm vaccination.

Example 8

MDSCs from TPSA23 Tumors but not Spleens are
Less Suppressive after Listeria Vaccination

Suppressor assays were carried out using monocytic and
granulocytic MDSCs isolated from TPSA23 tumors with
non-specifically activated naive murine cells, and specifi-
cally activated cells (PSA, CA9, PMA/ionomycyn). Results
demonstrated that the MDSCs isolated from tumors from the
Lm vaccinated groups have a diminished capacity to sup-
press the division of activated T cells as compared to MDSC
from the tumors of naive mice. (see Lm-LLO-PSA and
Lm-LLO-treated Groups in FIGS. 8 & 10, right-hand panel
in figures represents pooled cell division data from left-hand
panel). In addition, T responder cells from untreated mice
where no MDSCs were present and where the cells were
unstimulated/activated, remained in their parental (resting)
state (FIGS. 8 & 10), whereas T cells stimulated with PMA
or ionomycin were observed to replicate (FIGS. 8 & 10).
Further, it was observed that both, the Gr, Ly6G, and the
Gr,,, Ly6G_ MDSCs are less suppressive after treatment
with Listeria vaccines. This applies to their decreased abili-
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ties to suppress both the division of activated PSA-specific
T cells and non-specific (PMA/lonomycin stimulated) T
cells.

Moreover, suppressor assays carried out using MDSCs
isolated from TPSA23 tumors with non-specifically acti-
vated naive murine cells demonstrated that the MDSCs
isolated from tumors from the Lm vaccinated groups have a
diminished capacity to suppress the division of activated T
cells as compared to MDSC from the tumors of naive mice
(see FIGS. 8 & 10).
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namely, that MDSCs are less suppressive after Listeria
vaccination (FIGS. 15 & 17), that Listeria has no specific
effect on splenic monocytic MDSCs (FIGS. 16 & 18), that
there is a decrease in the suppressive ability of Tregs from
4T1 tumors after Listeria vaccination (FIG. 19), and that
Listeria has no effect on the suppressive ability of splenic
Tregs (FIG. 20).

Finally, it was observed that Listeria has no effect on the
suppressive ability of splenic Tregs

. . . . . 10
In addition, the observations discussed immediately . .
above relating to FIGS. 8 and 10 were not observed when The. preceding examples. are presented n orde.r to more
using splenic MDSCs. In the latter, splenocytes/T cells from ~ {ully illustrate the embodiments of the invention. They
the naive group, the Listeria-treated group (PSA, CA9),and  should in no way be construed, however, as limiting the
the PMA/ionomycin stimulated group (positive control) all broad scope of the invention.
demonstrated the same level of replication (FIGS. 9 & 11). 13
Hence, these results show that Listeria-mediated inhibition B le 11
of suppressor cells in tumors worked in an antigen-specific Xample
and non-specific manner, whereas Listeria has no effect on
aslglzrriltci %rr?zuleocci}étclcngr?nsefs as they are only suppressive in - Listeria Vectors are Capable of Driving a Thl
£e0-sp ’ T-Cell Immune Response Despite Helminth
Example 9 Infection-Mediated Suppression of Thl T-Cell
. Immune Response
Tumor T Regulatory Cells’ Reduced Suppression
but not Those from Spleens ) o )
25 Despite systemic biasing toward Th2, as evidenced by a
Suppressor assays were carried out using Tregs isolated reduced IFN-y response (FIG. 21) and an increase in IL-4
from TPSA23 tumors after Listeria treatment. It was and IL-10 production (FIGS. 22 and 23, respectively),
qbserved that after treatme?n.t with Listeria there is a reduc- antigen_speciﬁc production of IFN-Y remains unchanged
tion of the suppressive ability of Tregs from tumors (FIG. (FIG. 24), indicating this vaccine can produce a functional
12), hov.veveliélg Y;S found that splenic Tregs are still 30 cell.mediated immune response in the presence of a Th2
suppressive (F1G. 13). . . environment. This observation suggests that Listeria vector
As a control conventional CD4+ T cells were used in . . . DA
vaccines are capable of driving vaccine-specific immune
place of MDSCs or Tregs and were found not to have an . L. . o
effect on cell division (FIG. 14) responses in helminth infected populations. Further, Listeria
3 vectors should be considered in the development of new
Example 10 generation HIV-1, malaria or TB vaccines to be adminis-
tered t lations in sub-Sak: Afri here helminth
MDSCs and TREGS from 4T1 Tumors but not .erfe t.o po pﬁ.aﬁlons n 5111 ) aharatl Alfica where helmiy
Spleens are Less Suppressive after Listeria mntection 15 highly prevalent.
Vaccination The preceding examples are presented in order to more
40 fully illustrate the embodiments of the invention. They
As in the above, the same experiments were carried out should in no way be construed, however, as limiting the
using 4T1 tumors and the same observations were made, broad scope of the invention.
SEQUENCE LISTING
<160> NUMBER OF SEQ ID NOS: 41
<210> SEQ ID NO 1
<211> LENGTH: 1329
<212> TYPE: DNA
<213> ORGANISM: Listeria monocytogenes
<400> SEQUENCE: 1
atgaaaaaaa taatgctagt ttttattaca cttatattag ttagtctacce aattgegcaa 60
caaactgaag caaaggatgc atctgcattc aataaagaaa attcaattte atccatggca 120
ccaccagcat cteccgectge aagtcctaag acgecaatceyg aaaagaaaca cgcggatgaa 180
atcgataagt atatacaagg attggattac aataaaaaca atgtattagt ataccacgga 240
gatgcagtga caaatgtgce gccaagaaaa ggttacaaag atggaaatga atatattgtt 300
gtggagaaaa agaagaaatc catcaatcaa aataatgcag acattcaagt tgtgaatgea 360
atttcgagee taacctatce aggtgctcetce gtaaaagega atteggaatt agtagaaaat 420
caaccagatg ttctcecetgt aaaacgtgat tcattaacac tcagcattga tttgecaggt 480



53

US 9,463,227 B2

54

-continued
atgactaatc aagacaataa aatagttgta aaaaatgcca ctaaatcaaa cgttaacaac 540
gcagtaaata cattagtgga aagatggaat gaaaaatatg ctcaagctta tccaaatgta 600
agtgcaaaaa ttgattatga tgacgaaatg gcttacagtg aatcacaatt aattgcgaaa 660
tttggtacag catttaaagc tgtaaataat agcttgaatg taaacttcgg cgcaatcagt 720
gaagggaaaa tgcaagaaga agtcattagt tttaaacaaa tttactataa cgtgaatgtt 780
aatgaaccta caagaccttc cagatttttc ggcaaagctyg ttactaaaga gcagttgcaa 840
gegettggayg tgaatgcaga aaatcctect geatatatcet caagtgtgge gtatggeegt 900
caagtttatt tgaaattatc aactaattcc catagtacta aagtaaaagc tgcttttgat 960
gctgecgtaa gceggaaaatce tgtctcaggt gatgtagaac taacaaatat catcaaaaat 1020
tcttecttca aagccgtaat ttacggaggt tccgcaaaag atgaagttca aatcatcgac 1080
ggcaacctcg gagacttacg cgatattttg aaaaaaggcg ctacttttaa tcgagaaaca 1140
ccaggagttc ccattgctta tacaacaaac ttcctaaaag acaatgaatt agctgttatt 1200
aaaaacaact cagaatatat tgaaacaact tcaaaagctt atacagatgg aaaaattaac 1260
atcgatcact ctggaggata cgttgctcaa ttcaacattt cttgggatga agtaaattat 1320
gatctcgag 1329

<210> SEQ ID NO 2
<211> LENGTH: 442

<212> TYPE:

PRT

<213> ORGANISM: Listeria monocytogenes

<400> SEQUENCE: 2

Met Lys Lys Ile Met Leu Val Phe

1

Pro Ile Ala

Glu Asn Ser

35

Pro Lys Thr

50

5

Gln Gln Thr Glu Ala

20

Ile Ser Ser Met Ala

40

Pro Ile Glu Lys Lys

55

Ile Thr Leu
10

Lys Asp Ala
25

Pro Pro Ala

His Ala Asp

Ile Leu Val

Ser Ala Phe

30

Ser Pro Pro

45

Glu Ile Asp

60

Ser Leu
15
Asn Lys

Ala Ser

Lys Tyr

Ile

65

Asp

Glu

Ala

Ala

Leu

145

Met

Asn

Tyr

Glu

Gln

Ala

Tyr

Asp

Leu

130

Pro

Thr

Val

Ala

Met
210

Gly

Val

Ile

Ile

115

Val

Val

Asn

Asn

Gln
195

Ala

Leu

Thr

Val

100

Gln

Lys

Lys

Gln

Asn

180

Ala

Tyr

Asp

Asn

85

Val

Val

Ala

Arg

Asp

165

Ala

Tyr

Ser

Tyr

70

Val

Glu

Val

Asn

Asp

150

Asn

Val

Pro

Glu

Asn

Pro

Lys

Asn

Ser

135

Ser

Lys

Asn

Asn

Ser
215

Lys

Pro

Lys

Ala

120

Glu

Leu

Ile

Thr

Val
200

Gln

Asn

Arg

Lys

105

Ile

Leu

Thr

Val

Leu

185

Ser

Leu

Asn

Lys

90

Lys

Ser

Val

Leu

Val

170

Val

Ala

Ile

Val

75

Gly

Ser

Ser

Glu

Ser

155

Lys

Glu

Lys

Ala

Leu

Tyr

Ile

Leu

Asn

140

Ile

Asn

Arg

Ile

Lys
220

Val

Lys

Asn

Thr

125

Gln

Asp

Ala

Trp

Asp

205

Phe

Tyr

Asp

Gln

110

Tyr

Pro

Leu

Thr

Asn
190

Tyr

Gly

His

Gly

95

Asn

Pro

Asp

Pro

Lys
175
Glu

Asp

Thr

Gly

80

Asn

Asn

Gly

Val

Gly

160

Ser

Lys

Asp

Ala
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Phe Lys Ala Val Asn Asn Ser Leu Asn Val Asn Phe Gly Ala Ile Ser
225 230 235 240

Glu Gly Lys Met Gln Glu Glu Val Ile Ser Phe Lys Gln Ile Tyr Tyr
245 250 255

Asn Val Asn Val Asn Glu Pro Thr Arg Pro Ser Arg Phe Phe Gly Lys
260 265 270

Ala Val Thr Lys Glu Gln Leu Gln Ala Leu Gly Val Asn Ala Glu Asn
275 280 285

Pro Pro Ala Tyr Ile Ser Ser Val Ala Tyr Gly Arg Gln Val Tyr Leu
290 295 300

Lys Leu Ser Thr Asn Ser His Ser Thr Lys Val Lys Ala Ala Phe Asp
305 310 315 320

Ala Ala Val Ser Gly Lys Ser Val Ser Gly Asp Val Glu Leu Thr Asn
325 330 335

Ile Ile Lys Asn Ser Ser Phe Lys Ala Val Ile Tyr Gly Gly Ser Ala
340 345 350

Lys Asp Glu Val Gln Ile Ile Asp Gly Asn Leu Gly Asp Leu Arg Asp
355 360 365

Ile Leu Lys Lys Gly Ala Thr Phe Asn Arg Glu Thr Pro Gly Val Pro
370 375 380

Ile Ala Tyr Thr Thr Asn Phe Leu Lys Asp Asn Glu Leu Ala Val Ile
385 390 395 400

Lys Asn Asn Ser Glu Tyr Ile Glu Thr Thr Ser Lys Ala Tyr Thr Asp
405 410 415

Gly Lys Ile Asn Ile Asp His Ser Gly Gly Tyr Val Ala Gln Phe Asn
420 425 430

Ile Ser Trp Asp Glu Val Asn Tyr Asp Leu
435 440

<210> SEQ ID NO 3

<211> LENGTH: 390

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: truncated ActA

<400> SEQUENCE: 3

Met Arg Ala Met Met Val Val Phe Ile Thr Ala Asn Cys Ile Thr Ile
1 5 10 15

Asn Pro Asp Ile Ile Phe Ala Ala Thr Asp Ser Glu Asp Ser Ser Leu
20 25 30

Asn Thr Asp Glu Trp Glu Glu Glu Lys Thr Glu Glu Gln Pro Ser Glu
35 40 45

Val Asn Thr Gly Pro Arg Tyr Glu Thr Ala Arg Glu Val Ser Ser Arg
50 55 60

Asp Ile Lys Glu Leu Glu Lys Ser Asn Lys Val Arg Asn Thr Asn Lys
65 70 75 80

Ala Asp Leu Ile Ala Met Leu Lys Glu Lys Ala Glu Lys Gly Pro Asn
85 90 95

Ile Asn Asn Asn Asn Ser Glu Gln Thr Glu Asn Ala Ala Ile Asn Glu
100 105 110

Glu Ala Ser Gly Ala Asp Arg Pro Ala Ile Gln Val Glu Arg Arg His
115 120 125

Pro Gly Leu Pro Ser Asp Ser Ala Ala Glu Ile Lys Lys Arg Arg Lys
130 135 140
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Ala Ile Ala Ser Ser Asp Ser Glu Leu Glu Ser Leu Thr Tyr Pro Asp
145 150 155 160

Lys Pro Thr Lys Val Asn Lys Lys Lys Val Ala Lys Glu Ser Val Ala
165 170 175

Asp Ala Ser Glu Ser Asp Leu Asp Ser Ser Met Gln Ser Ala Asp Glu
180 185 190

Ser Ser Pro Gln Pro Leu Lys Ala Asn Gln Gln Pro Phe Phe Pro Lys
195 200 205

Val Phe Lys Lys Ile Lys Asp Ala Gly Lys Trp Val Arg Asp Lys Ile
210 215 220

Asp Glu Asn Pro Glu Val Lys Lys Ala Ile Val Asp Lys Ser Ala Gly
225 230 235 240

Leu Ile Asp Gln Leu Leu Thr Lys Lys Lys Ser Glu Glu Val Asn Ala
245 250 255

Ser Asp Phe Pro Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu Ala Leu
260 265 270

Pro Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Ala Thr Ser Glu
275 280 285

Pro Ser Ser Phe Glu Phe Pro Pro Pro Pro Thr Asp Glu Glu Leu Arg
290 295 300

Leu Ala Leu Pro Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Ala
305 310 315 320

Thr Ser Glu Pro Ser Ser Phe Glu Phe Pro Pro Pro Pro Thr Glu Asp
325 330 335

Glu Leu Glu Ile Ile Arg Glu Thr Ala Ser Ser Leu Asp Ser Ser Phe
340 345 350

Thr Arg Gly Asp Leu Ala Ser Leu Arg Asn Ala Ile Asn Arg His Ser
355 360 365

Gln Asn Phe Ser Asp Phe Pro Pro Ile Pro Thr Glu Glu Glu Leu Asn
370 375 380

Gly Arg Gly Gly Arg Pro
385 390

<210> SEQ ID NO 4

<211> LENGTH: 1151

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: truncated ActA

<400> SEQUENCE: 4

Ala Thr Gly Cys Gly Thr Gly Cys Gly Ala Thr Gly Ala Thr Gly Gly
1 5 10 15

Thr Gly Gly Thr Thr Thr Thr Cys Ala Thr Thr Ala Cys Thr Gly Cys
20 25 30

Cys Ala Ala Thr Thr Gly Cys Ala Thr Thr Ala Cys Gly Ala Thr Thr
35 40 45

Ala Ala Cys Cys Cys Cys Gly Ala Cys Ala Thr Ala Ala Thr Ala Thr
50 55 60

Thr Thr Gly Cys Ala Gly Cys Gly Ala Cys Ala Gly Ala Thr Ala Gly
65 70 75 80

Cys Gly Ala Ala Gly Ala Thr Thr Cys Thr Ala Gly Thr Cys Thr Ala
85 90 95

Ala Ala Cys Ala Cys Ala Gly Ala Thr Gly Ala Ala Thr Gly Gly Gly
100 105 110
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Ala Ala Gly Ala Ala Gly Ala Ala Ala Ala Ala Ala Cys Ala Gly Ala
115 120 125

Ala Gly Ala Gly Cys Ala Ala Cys Cys Ala Ala Gly Cys Gly Ala Gly
130 135 140

Gly Thr Ala Ala Ala Thr Ala Cys Gly Gly Gly Ala Cys Cys Ala Ala
145 150 155 160

Gly Ala Thr Ala Cys Gly Ala Ala Ala Cys Thr Gly Cys Ala Cys Gly
165 170 175

Thr Gly Ala Ala Gly Thr Ala Ala Gly Thr Thr Cys Ala Cys Gly Thr
180 185 190

Gly Ala Thr Ala Thr Thr Ala Ala Ala Gly Ala Ala Cys Thr Ala Gly
195 200 205

Ala Ala Ala Ala Ala Thr Cys Gly Ala Ala Thr Ala Ala Ala Gly Thr
210 215 220

Gly Ala Gly Ala Ala Ala Thr Ala Cys Gly Ala Ala Cys Ala Ala Ala
225 230 235 240

Gly Cys Ala Gly Ala Cys Cys Thr Ala Ala Thr Ala Gly Cys Ala Ala
245 250 255

Thr Gly Thr Thr Gly Ala Ala Ala Gly Ala Ala Ala Ala Ala Gly Cys
260 265 270

Ala Gly Ala Ala Ala Ala Ala Gly Gly Thr Cys Cys Ala Ala Ala Thr
275 280 285

Ala Thr Cys Ala Ala Thr Ala Ala Thr Ala Ala Cys Ala Ala Cys Ala
290 295 300

Gly Thr Gly Ala Ala Cys Ala Ala Ala Cys Thr Gly Ala Gly Ala Ala
305 310 315 320

Thr Gly Cys Gly Gly Cys Thr Ala Thr Ala Ala Ala Thr Gly Ala Ala
325 330 335

Gly Ala Gly Gly Cys Thr Thr Cys Ala Gly Gly Ala Gly Cys Cys Gly
340 345 350

Ala Cys Cys Gly Ala Cys Cys Ala Gly Cys Thr Ala Thr Ala Cys Ala
355 360 365

Ala Gly Thr Gly Gly Ala Gly Cys Gly Thr Cys Gly Thr Cys Ala Thr
370 375 380

Cys Cys Ala Gly Gly Ala Thr Thr Gly Cys Cys Ala Thr Cys Gly Gly
385 390 395 400

Ala Thr Ala Gly Cys Gly Cys Ala Gly Cys Gly Gly Ala Ala Ala Thr
405 410 415

Thr Ala Ala Ala Ala Ala Ala Ala Gly Ala Ala Gly Gly Ala Ala Ala
420 425 430

Gly Cys Cys Ala Thr Ala Gly Cys Ala Thr Cys Ala Thr Cys Gly Gly
435 440 445

Ala Thr Ala Gly Thr Gly Ala Gly Cys Thr Thr Gly Ala Ala Ala Gly
450 455 460

Cys Cys Thr Thr Ala Cys Thr Thr Ala Thr Cys Cys Gly Gly Ala Thr
465 470 475 480

Ala Ala Ala Cys Cys Ala Ala Cys Ala Ala Ala Ala Gly Thr Ala Ala
485 490 495

Ala Thr Ala Ala Gly Ala Ala Ala Ala Ala Ala Gly Thr Gly Gly Cys
500 505 510

Gly Ala Ala Ala Gly Ala Gly Thr Cys Ala Gly Thr Thr Gly Cys Gly
515 520 525



61

US 9,463,227 B2

-continued

62

Gly

Ala

545

Gly

Thr

Thr

Ala

Gly

625

Ala

Gly

Gly

Thr

Thr

705

Thr

Thr

Thr

Thr

Cys

785

Gly

Cys

Thr

Thr

Cys

865

Thr

Gly

Cys

Cys

Ala

530

Cys

Cys

Cys

Ala

Cys

610

Thr

Ala

Gly

Ala

Ala

690

Gly

Thr

Ala

Gly

Cys

770

Ala

Thr

Cys

Thr

Cys

850

Cys

Thr

Gly

Thr

Gly
930

Thr

Thr

Ala

Thr

Ala

595

Cys

Ala

Gly

Thr

Cys

675

Ala

Ala

Ala

Ala

Ala

755

Gly

Cys

Thr

Ala

Cys

835

Cys

Gly

Cys

Ala

Thr

915

Cys

Gly

Thr

Gly

Thr

580

Ala

Ala

Thr

Ala

Ala

660

Gly

Ala

Thr

Ala

Cys

740

Ala

Gly

Cys

Ala

Gly

820

Thr

Thr

Ala

Cys

Thr

900

Gly

Cys

Cys

Ala

Thr

565

Cys

Ala

Thr

Thr

Thr

645

Cys

Ala

Gly

Ala

Thr

725

Cys

Gly

Ala

Thr

Ala

805

Ala

Thr

Gly

Gly

Ala

885

Gly

Cys

Ala

Thr

Gly

550

Cys

Ala

Gly

Thr

Thr

630

Gly

Gly

Ala

Ala

Ala

710

Thr

Ala

Ala

Cys

Ala

790

Gly

Gly

Gly

Cys

Cys

870

Cys

Ala

Thr

Ala

Thr

535

Ala

Ala

Cys

Cys

Thr

615

Ala

Cys

Thr

Ala

Ala

695

Ala

Gly

Ala

Gly

Thr

775

Cys

Ala

Ala

Gly

Thr

855

Thr

Cys

Ala

Thr

Thr
935

Cys

Thr

Gly

Cys

Ala

600

Thr

Ala

Gly

Gly

Ala

680

Ala

Ala

Ala

Ala

Gly

760

Thr

Gly

Cys

Cys

Thr

840

Ala

Cys

Ala

Gly

Thr

920

Gly

Thr

Thr

Cys

Ala

585

Ala

Thr

Ala

Gly

Ala

665

Thr

Gly

Gly

Cys

Ala

745

Thr

Cys

Gly

Thr

Ala

825

Thr

Cys

Ala

Cys

Ala

905

Gly

Cys

Gly

Cys

Ala

570

Cys

Ala

Cys

Ala

Gly

650

Thr

Cys

Cys

Thr

Cys

730

Ala

Ala

Cys

Ala

Thr

810

Cys

Thr

Ala

Thr

Cys

890

Gly

Cys

Thr

Ala

Thr

555

Gly

Ala

Cys

Cys

Ala

635

Gly

Ala

Cys

Gly

Gly

715

Ala

Gly

Ala

Cys

Thr

795

Gly

Cys

Thr

Thr

Thr

875

Ala

Thr

Cys

Thr

Ala Ala
540

Ala Gly

Ala Thr

Ala Cys

Cys Ala
605

Cys Thr
620

Ala Ala

Ala Ala

Ala Ala

Thr Gly
685

Ala Thr
700

Cys Ala

Ala Thr

Ala Ala

Ala Thr
765

Gly Cys
780

Gly Ala

Cys Thr

Ala Ala

Ala Ala
845

Cys Ala
860

Cys Gly

Cys Cys

Thr Ala

Ala Gly

925

Cys Thr
940

Gly

Cys

Gly

Cys

590

Ala

Ala

Thr

Ala

Ala

670

Ala

Thr

Gly

Thr

Ala

750

Gly

Cys

Ala

Thr

Thr

830

Thr

Gly

Ala

Thr

Ala

910

Ala

Thr

Thr

Ala

Ala

575

Thr

Cys

Ala

Ala

Thr

655

Thr

Ala

Gly

Gly

Ala

735

Ala

Cys

Ala

Gly

Thr

815

Gly

Gly

Ala

Ala

Ala

895

Gly

Gly

Gly

Gly

Thr

560

Gly

Thr

Ala

Ala

Ala

640

Gly

Cys

Gly

Thr

Gly

720

Thr

Gly

Thr

Cys

Ala

800

Gly

Cys

Cys

Ala

Thr

880

Cys

Ala

Ala

Gly
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Thr Thr Thr Thr Ala Ala Thr Gly Cys Thr Cys Cys Thr Gly Cys Thr

945 950 955 960

Ala Cys Ala Thr Cys Gly Gly Ala Ala Cys Cys Gly Ala Gly Cys Thr

965 970 975
Cys Gly Thr Thr Cys Gly Ala Ala Thr Thr Thr Cys Cys Ala Cys Cys
980 985 990
Gly Cys Cys Thr Cys Cys Ala Ala Cys Ala Gly Ala Ala Gly Ala Thr
995 1000 1005

Gly Ala Ala Cys Thr Ala Gly Ala Ala Ala Thr Cys Ala Thr Cys
1010 1015 1020

Cys Gly Gly Gly Ala Ala Ala Cys Ala Gly Cys Ala Thr Cys Cys
1025 1030 1035

Thr Cys Gly Cys Thr Ala Gly Ala Thr Thr Cys Thr Ala Gly Thr
1040 1045 1050

Thr Thr Thr Ala Cys Ala Ala Gly Ala Gly Gly Gly Gly Ala Thr
1055 1060 1065

Thr Thr Ala Gly Cys Thr Ala Gly Thr Thr Thr Gly Ala Gly Ala
1070 1075 1080

Ala Ala Thr Gly Cys Thr Ala Thr Thr Ala Ala Thr Cys Gly Cys
1085 1090 1095

Cys Ala Thr Ala Gly Thr Cys Ala Ala Ala Ala Thr Thr Thr Cys
1100 1105 1110

Thr Cys Thr Gly Ala Thr Thr Thr Cys Cys Cys Ala Cys Cys Ala
1115 1120 1125

Ala Thr Cys Cys Cys Ala Ala Cys Ala Gly Ala Ala Gly Ala Ala
1130 1135 1140

Gly Ala Gly Thr Thr Gly Ala Ala
1145 1150

<210> SEQ ID NO 5

<211> LENGTH: 669

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: truncated ActA

<400> SEQUENCE: 5

tttatcacgt acccatttcc ccgcatcttt tattttttta aatactttag ggaaaaatgg

tttttgattt gcttttaaag gttgtggtgt agactcegtet getgactgea tgctagaatce

taagtcactt tcagaagcat ccacaactga ctctttegec acttttetet tatttgettt

tgttggttta tctggataag taaggctttc aagctcacta tccgacgacyg ctatggettt

tcttettttt ttaatttccg ctgcgctate cgatgacaga cctggatgac gacgctccac

ttgcagagtt ggtcggtcga ctcctgaage ctettcattt atagccacat ttectgtttg

ctcaccgttyg ttattattgt tattcggacce tttectetget tttgetttca acattgetat

taggtctgcet ttgttcgtat ttttcacttt attcgatttt tctagttcct caatatcacg

tgaacttact tcacgtgcag tttcgtatct tggtccegta tttacctege ttggetgete

ttetgttttt tcttettece attcatetgt gtttagactyg gaatcttege tatctgtcege

tgcaaatatt atgtcggggt taatcgtaat gecagttggca gtaatgaaaa ctaccatcat

cgcacgcat

60

120

180

240

300

360

420

480

540

600

660

669
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<210> SEQ ID NO 6

<211> LENGTH: 390

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: truncated ActA

<400> SEQUENCE: 6

Met Arg Ala Met Met Val Val Phe Ile Thr Ala Asn Cys Ile Thr Ile
1 5 10 15

Asn Pro Asp Ile Ile Phe Ala Ala Thr Asp Ser Glu Asp Ser Ser Leu
Asn Thr Asp Glu Trp Glu Glu Glu Lys Thr Glu Glu Gln Pro Ser Glu
35 40 45

Val Asn Thr Gly Pro Arg Tyr Glu Thr Ala Arg Glu Val Ser Ser Arg
50 55 60

Asp Ile Lys Glu Leu Glu Lys Ser Asn Lys Val Arg Asn Thr Asn Lys
65 70 75 80

Ala Asp Leu Ile Ala Met Leu Lys Glu Lys Ala Glu Lys Gly Pro Asn
85 90 95

Ile Asn Asn Asn Asn Ser Glu Gln Thr Glu Asn Ala Ala Ile Asn Glu
100 105 110

Glu Ala Ser Gly Ala Asp Arg Pro Ala Ile Gln Val Glu Arg Arg His
115 120 125

Pro Gly Leu Pro Ser Asp Ser Ala Ala Glu Ile Lys Lys Arg Arg Lys
130 135 140

Ala Ile Ala Ser Ser Asp Ser Glu Leu Glu Ser Leu Thr Tyr Pro Asp
145 150 155 160

Lys Pro Thr Lys Val Asn Lys Lys Lys Val Ala Lys Glu Ser Val Ala
165 170 175

Asp Ala Ser Glu Ser Asp Leu Asp Ser Ser Met Gln Ser Ala Asp Glu
180 185 190

Ser Ser Pro Gln Pro Leu Lys Ala Asn Gln Gln Pro Phe Phe Pro Lys
195 200 205

Val Phe Lys Lys Ile Lys Asp Ala Gly Lys Trp Val Arg Asp Lys Ile
210 215 220

Asp Glu Asn Pro Glu Val Lys Lys Ala Ile Val Asp Lys Ser Ala Gly
225 230 235 240

Leu Ile Asp Gln Leu Leu Thr Lys Lys Lys Ser Glu Glu Val Asn Ala
245 250 255

Ser Asp Phe Pro Pro Pro Pro Thr Asp Glu Glu Leu Arg Leu Ala Leu
260 265 270

Pro Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Ala Thr Ser Glu
275 280 285

Pro Ser Ser Phe Glu Phe Pro Pro Pro Pro Thr Asp Glu Glu Leu Arg
290 295 300

Leu Ala Leu Pro Glu Thr Pro Met Leu Leu Gly Phe Asn Ala Pro Ala
305 310 315 320

Thr Ser Glu Pro Ser Ser Phe Glu Phe Pro Pro Pro Pro Thr Glu Asp
325 330 335

Glu Leu Glu Ile Ile Arg Glu Thr Ala Ser Ser Leu Asp Ser Ser Phe
340 345 350

Thr Arg Gly Asp Leu Ala Ser Leu Arg Asn Ala Ile Asn Arg His Ser
355 360 365
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68

Gln Asn Phe Ser Asp Phe Pro Pro Ile Pro Thr Glu Glu Glu Leu Asn

370

375

Gly Arg Gly Gly Arg Pro
390

385

<210> SEQ ID NO 7
<211> LENGTH: 1170

<212> TYPE:

DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION:

<400> SEQUENCE: 7

atgcgtgega

atatttgcag

aaaacagaag

gtaagttcac

gcagacctaa

aacagtgaac

gctatacaag

aaaagaagga

aaaccaacaa

agtgacttag

aaccaacaac

cgtgataaaa

ttaattgacc

ccaccaccta

tttaatgete

gaagagttaa

acatcggaac

atccgggaaa

agaaatgcta

gaagagttga

tgatggtggt

cgacagatag

agcaaccaag

gtgatattaa

tagcaatgtt

aaactgagaa

tggagcgtcg

aagccatage

aagtaaataa

attctagcat

catttttcce

tcgacgaaaa

aattattaac

cggatgaaga

ctgctacate

gacttgettt

cgagctegtt

cagcatccte

ttaatcgeca

acgggagagg

<210> SEQ ID NO 8
<211> LENGTH: 32

<212> TYPE:

PRT

tttcattact

cgaagattct

cgaggtaaat

agaactagaa

gaaagaaaaa

tgcggctata

tcatccagga

atcatcggat

gaaaaaagtyg

gcagtcagca

taaagtattt

tcctgaagta

caaaaagaaa

gttaagactt

agaaccgage

gccagagacyg

cgaatttcca

gctagattet

tagtcaaaat

cggtagacca

truncated ActA

gccaattgca

agtctaaaca

acgggaccaa

aaatcgaata

gcagaaaaag

aatgaagagg

ttgccategyg

agtgagcttg

gcgaaagagt

gatgagtett

aaaaaaataa

aagaaagcga

agtgaagagg

getttgecag

tcattcgaat

ccaatgette

cecgectecaa

agttttacaa

ttetetgatt

<213> ORGANISM: Listeria monocytogenes

<400> SEQUENCE: 8

380

ttacgattaa

cagatgaatg

gatacgaaac

aagtgagaaa

gtccaaatat

cttcaggage

atagcgcage

aaagccttac

cagttgcgga

caccacaacc

aagatgcggg

ttgttgataa

taaatgctte

agacaccaat

ttccaccace

ttggttttaa

cagaagatga

gaggggattt

tcccaccaat

cccegacata

ggaagaagaa

tgcacgtgaa

tacgaacaaa

caataataac

cgaccgacca

ggaaattaaa

ttatccggat

tgcttectgaa

tttaaaagca

gaaatgggta

aagtgcaggg

ggacttceeg

gettettggt

acctacggat

tgctecctget

actagaaatc

agctagtttyg

cccaacagaa

Lys Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala

1

5

10

15

Ser Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Glu Ile Asp Lys

20

<210> SEQ ID NO 9
<211> LENGTH: 19

<212> TYPE:

PRT

25

<213> ORGANISM: Listeria monocytogenes

30

60

120

180

240

300

360

420

480

540

600

660

720

780

840

900

960

1020

1080

1140

1170
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<400> SEQUENCE: 9

Lys Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala
1 5 10 15

Ser Pro Lys

<210> SEQ ID NO 10

<211> LENGTH: 14

<212> TYPE: PRT

<213> ORGANISM: Listeria monocytogenes

<400> SEQUENCE: 10

Lys Thr Glu Glu Gln Pro Ser Glu Val Asn Thr Gly Pro Arg
1 5 10

<210> SEQ ID NO 11

<211> LENGTH: 28

<212> TYPE: PRT

<213> ORGANISM: Listeria monocytogenes

<400> SEQUENCE: 11

Lys Ala Ser Val Thr Asp Thr Ser Glu Gly Asp Leu Asp Ser Ser Met
1 5 10 15

Gln Ser Ala Asp Glu Ser Thr Pro Gln Pro Leu Lys
20 25

<210> SEQ ID NO 12

<211> LENGTH: 20

<212> TYPE: PRT

<213> ORGANISM: Listeria monocytogenes

<400> SEQUENCE: 12

Lys Asn Glu Glu Val Asn Ala Ser Asp Phe Pro Pro Pro Pro Thr Asp
1 5 10 15

Glu Glu Leu Arg
20

<210> SEQ ID NO 13

<211> LENGTH: 33

<212> TYPE: PRT

<213> ORGANISM: Listeria monocytogenes

<400> SEQUENCE: 13

Arg Gly Gly Ile Pro Thr Ser Glu Glu Phe Ser Ser Leu Asn Ser Gly
1 5 10 15

Asp Phe Thr Asp Asp Glu Asn Ser Glu Thr Thr Glu Glu Glu Ile Asp
20 25 30

Arg

<210> SEQ ID NO 14

<211> LENGTH: 28

<212> TYPE: PRT

<213> ORGANISM: Listeria monocytogenes

<400> SEQUENCE: 14

Lys Glu Ser Val Val Asp Ala Ser Glu Ser Asp Leu Asp Ser Ser Met
1 5 10 15

Gln Ser Ala Asp Glu Ser Thr Pro Gln Pro Leu Lys
20 25
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<210> SEQ ID NO 15

<211> LENGTH: 20

<212> TYPE: PRT

<213> ORGANISM: Listeria monocytogenes

<400> SEQUENCE: 15

Lys Ser Glu Glu Val Asn Ala Ser Asp Phe Pro Pro Pro Pro Thr Asp
1 5 10 15

Glu Glu Leu Arg
20

<210> SEQ ID NO 16

<211> LENGTH: 33

<212> TYPE: PRT

<213> ORGANISM: Listeria monocytogenes

<400> SEQUENCE: 16

Arg Gly Gly Arg Pro Thr Ser Glu Glu Phe Ser Ser Leu Asn Ser Gly
1 5 10 15

Asp Phe Thr Asp Asp Glu Asn Ser Glu Thr Thr Glu Glu Glu Ile Asp
20 25 30

Arg

<210> SEQ ID NO 17

<211> LENGTH: 19

<212> TYPE: PRT

<213> ORGANISM: Listeria seeligeri

<400> SEQUENCE: 17

Arg Ser Glu Val Thr Ile Ser Pro Ala Glu Thr Pro Glu Ser Pro Pro
1 5 10 15

Ala Thr Pro

<210> SEQ ID NO 18

<211> LENGTH: 17

<212> TYPE: PRT

<213> ORGANISM: Streptococcus pyogenes

<400> SEQUENCE: 18

Lys Gln Asn Thr Ala Ser Thr Glu Thr Thr Thr Thr Asn Glu Gln Pro
1 5 10 15

Lys

<210> SEQ ID NO 19

<211> LENGTH: 17

<212> TYPE: PRT

<213> ORGANISM: Streptococcus equisimilis

<400> SEQUENCE: 19

Lys Gln Asn Thr Ala Asn Thr Glu Thr Thr Thr Thr Asn Glu Gln Pro
1 5 10 15

Lys

<210> SEQ ID NO 20

<211> LENGTH: 21

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: dal gene forward primer

<400> SEQUENCE: 20

ccatggtgac aggctggcat ¢ 21
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<210> SEQ ID NO 21

<211> LENGTH: 27

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: dal gene reverse primer

<400> SEQUENCE: 21

gctagectaa tggatgtatt ttctagg

<210> SEQ ID NO 22

<211> LENGTH: 27

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: minimal pé60 promoter sequence forward primer

<400> SEQUENCE: 22

ttaattaaca aatagttggt atagtcc

<210> SEQ ID NO 23

<211> LENGTH: 36

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: minimal pé60 promoter sequence forward primer

<400> SEQUENCE: 23

gacgatgcca gcctgtcace atggaaaact cctete

<210> SEQ ID NO 24

<211> LENGTH: 156

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: truncated pé60 promoter

<400> SEQUENCE: 24

caaatagttg gtatagtcct ctttagectt tggagtatta tctcatcatt tgttttttag
gtgaaaactyg ggtaaactta gtattatcaa tataaaatta attctcaaat acttaattac
gtactgggat tttctgaaaa aagagaggag ttttcc

<210> SEQ ID NO 25

<211> LENGTH: 25

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: oriRep forward primer

<400> SEQUENCE: 25

ggcgccacta actcaacgcet agtag

<210> SEQ ID NO 26

<211> LENGTH: 27

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: oriRep reverse primer

<400> SEQUENCE: 26

gctagccage aaagaaaaac aaacacg

27

27

36

60

120

156

25

27
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<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 27

LENGTH: 38

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: oriRep forward primer

SEQUENCE: 27

gtcgacggte accggcgceca ctaactcaac gctagtag

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 28

LENGTH: 35

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: oriRep reverse primer

SEQUENCE: 28

ttaattaagc tagccagcaa agaaaaacaa acacg

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 29

LENGTH: 29

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: F primer for amplifying LLO-E7 gene

SEQUENCE: 29

atgaaaaaaa taatgctagt ttttattac

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 30

LENGTH: 48

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: R primer for amplifying LLO-E7 gene

SEQUENCE: 30

geggecegett aatgatgatg atgatgatgt ggtttctgag aacagatg

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 31

LENGTH: 22

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Tagman primer-probe sets

SEQUENCE: 31

gcaagtgtga ctctacgett cg

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 32

LENGTH: 21

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Tagman primer-probe sets

SEQUENCE: 32

tgcccattaa caggtcttece a

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 33

LENGTH: 32

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Tagman primer-probe sets

38

35

29

48

22

21
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<400>

SEQUENCE: 33

tgcgtacaaa gcacacacgt agacattegt ac

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 34

LENGTH: 24

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Tagman primer-probe sets

SEQUENCE: 34

tgacatcgtt tgtgtttgag ctag

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 35

LENGTH: 23

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Tagman primer-probe sets

SEQUENCE: 35

gcagcgcetcet ctataccagg tac

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 36

LENGTH: 38

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Tagman primer-probe sets

SEQUENCE: 36

ttaatgtcca tgttatgtct ccgttatage tcategta

<210>
<211>
<212>
<213>
<220>
<223>

<400>

SEQ ID NO 37

LENGTH: 2015

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: DNA fragment that are present upstream and

downstream of inl C region

SEQUENCE: 37

atggcgeggyg atggtatact atacaagegt atggttcaaa aagatacttt gaattaagaa

gtacaataaa gttaacttca ttagacaaaa agaaaaaaca aggaagaata gtacatagtt

ataaatactt ggagagtgag gtgtaatatg ggggcagctg atttttgggg tttcatatat

gtagtttcaa gattagccat tgttgcggca gtagtttact tcttatactt attgagaaaa

attgcaaata aatagaaaaa aagccttgte aaacgagget ttttttatge aaaaaatacg

acgaatgaag ccatgtgaga caatttggaa tagcagacaa caaggaaggt agaacatgtt

ttgaaaaatt tactgatttt cgattattat taacgcttgt taatttaaac atctcttatt

tttgctaaca tataagtata caaagggaca taaaaaggtt aacagegttt gttaaatagg

aagtatatga aaatcctett ttgtgtttet aaatttattt ttaaggagtg gagaatgttg

aaaaaaaata attggttaca aaatgcagta atagcaatgc tagtgttaat tgtaggtctg

tgcattaata tgggttctgg aacaaaagta caagctgaga gtattcaacg accaacgcct

attaaccaag ttttteccaga tcccggecta gegaatgcag tgaaacaaaa tttagggaag

caaagtgtta cagaccttgt atcacaaaag gaactatctg gagtacaaaa tttcaatgga

gataatagca acattcaatc tcttgcggga atgcaatttt tcactaattt aaaagaactt

32

24

23

38

60

120

180

240

300

360

420

480

540

600

660

720

780

840
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80

catctatcce ataatcaaat aagtgacctt agtcctttaa aggatctaac
gagctatctyg tgaatagaaa cagactgaaa aatttaaacg gaattccaag
tctegettgt ttttagataa caacgaactc agagatactyg actcgcettat
aatctagaaa tcttatctat tcgtaataat aagttaaaaa gtattgtgat
ttatcaaaac tagaggtatt agatttgcat ggtaatgaaa taacaaatac
actagattga agaaagttaa ctggatagat ttaactggtc agaaatgtgt
gtaaaatacc aaccagaatt gtatataaca aatactgtca aagacccaga
atatctccat attacatcag taatggtggg agttatgtag atggttgtgt
ttgccagttt atacagatga agtaagctat aagtttagcyg aatatataaa
actgaggcta tatttgatgg aacagttaca caacctatca agaattagga
cctgtatact ttgagetctce gtataatcac gagagcetttt taaatatgta
atctcttgac aaaaagaacg tttattcgta taaggttacc aagagatgaa
tatttacaat tcaccttgac accaaaaact ccatatgata tagtaaataa
caagaaagaa gaagcaaccc gecttctegece tegttaacac gaacgtttte
ttcaaacttt cgtcgegtag cttacgegat tttgaatgtg cgggattget
cegttttttt atggecteccg aacgaatgag ttagcaggece gcagatttga
tctatettgt tgtaacaaaa ttaagtggag gtggctcacc attagcaaag
aaacgatggg attcgtgcac gtgaagtaag attgatcgac caagacggtg
cgtgaagagt aaaatcgatg cgcttcaaat tgctgaaaag gctaatcttg
tgttgctcca acagcgaaac cgccagtage tcegta
<210> SEQ ID NO 38
<211> LENGTH: 1140
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: DNA fragment that are present
downstream of inl C region
<400> SEQUENCE: 38
gaattcatgyg cgcgggatgg tatactatac aagcgtatgg ttcaaaaaga
taagaagtac aataaagtta acttcattag acaaaaagaa aaaacaagga
atagttataa atacttggag agtgaggtgt aatatggggyg cagctgattt
atatatgtag tttcaagatt agccattgtt gecggcagtag tttacttett
agaaaaattg caaataaata gaaaaaaagc cttgtcaaac gaggcttttt
aatacgacga atgaagccat gtgagacaat ttggaatagce agacaacaag
catgttttga aaaatttact gattttcgat tattattaac gcttgttaat
cttatttttyg ctaacatata agtatacaaa gggacataaa aaggttaaca
aataggaagt atatgaaaat cctcttttgt gtttctaaat ttatttttaa
ggatccggac ttgtgcacac ctgtatactt tgagctctceg tataatcacg
aaatatgtaa gtcttaatta tctcttgaca aaaagaacgt ttattcgtat
agagatgaag aaactatttt atttacaatt caccttgaca ccaaaaactc

agtaaataag gttattaaac aagaaagaag aagcaacccg cttctegect

aacgttttca ggcaaaaaat tcaaactttce gtecgegtage ttacgegatt

taagttagaa 900
tgcttgttta 960
tcatttgaaa 1020
gcttggtttt 1080
aggtggacta 1140
gaatgaacca 1200
tggaagatgg 1260
cctgtgggaa 1320
cgttggggayg 1380
cttgtgcaca 1440
agtcttaatt 1500
gaaactattt 1560
ggttattaaa 1620
aggcaaaaaa 1680
gaaaagcagc 1740
acagctattt 1800
acatgttggt 1860
aacaattagg 1920
atctagtgcet 1980

2015

upstream and

tactttgaat 60
agaatagtac 120
ttggggttte 180
atacttattg 240
ttatgcaaaa 300
gaaggtagaa 360
ttaaacatct 420
gcgtttgtta 480

ggagtggaga 540

agagcttttt 600
aaggttacca 660
catatgatat 720
cgttaacacyg 780
ttgaatgtgce 840
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gggattgctyg aaaagcagcce cgttttttta tggectecga acgaatgagt tagcaggecyg 900
cagatttgaa cagctatttt ctatcttgtt gtaacaaaat taagtggagyg tggctcacca 960
ttagcaaaga catgttggta aacgatggga ttcgtgcacg tgaagtaaga ttgatcgacc 1020
aagacggtga acaattaggc gtgaagagta aaatcgatgc gcttcaaatt gctgaaaagg 1080
ctaatcttga tctagtgctt gttgctccaa cagcgaaacc gccagtagcet cgtactgcag 1140
<210> SEQ ID NO 39
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer to verify deletion of ActA
<400> SEQUENCE: 39
tgggatggcce aagaaattce 19
<210> SEQ ID NO 40
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer to verify deletion of ActA
<400> SEQUENCE: 40
ctaccatgtc ttccgttget tg 22
<210> SEQ ID NO 41
<211> LENGTH: 1256
<212> TYPE: DNA
<213> ORGANISM: Listeria monocytogenes
<400> SEQUENCE: 41
gegecaaate attggttgat tggtgaggat gtetgtgtge gtgggtegeg agatgggega 60
ataagaagca ttaaagatcc tgacaaatat aatcaagcgg ctcatatgaa agattacgaa 120
tegettecac tcacagagga aggcgactgg ggcggagtte attataatag tggtatcccg 180
aataaagcag cctataatac tatcactaaa cttggaaaag aaaaaacaga acagctttat 240
tttegegect taaagtacta tttaacgaaa aaatcccagt ttaccgatgce gaaaaaagcg 300
cttcaacaag cagcgaaaga tttatatggt gaagatgctt ctaaaaaagt tgctgaagcet 360
tgggaagcag ttggggttaa ctgattaaca aatgttagag aaaaattaat tctccaagtg 420
atattcttaa aataattcat gaatattttt tcttatatta gctaattaag aagataacta 480
actgctaatc caatttttaa cggaacaaat tagtgaaaat gaaggccgaa ttttecttgt 540
tctaaaaagg ttgtattagce gtatcacgag gagggagtat aagtgggatt aaacagattt 600
atgcgtgcga tgatggtggt tttcattact gecaattgea ttacgattaa ccccgacgte 660
gacccatacyg acgttaattc ttgcaatgtt agctattgge gtgttcetett taggggegtt 720
tatcaaaatt attcaattaa gaaaaaataa ttaaaaacac agaacgaaag aaaaagtgag 780
gtgaatgata tgaaattcaa aaaggtggtt ctaggtatgt gcttgatcgce aagtgttcta 840
gtettteegy taacgataaa agcaaatgcce tgttgtgatg aatacttaca aacacccgea 900
gctecgeatyg atattgacag caaattacca cataaactta gttggtccge ggataaccceg 960
acaaatactg acgtaaatac gcactattgg ctttttaaac aagcggaaaa aatactagct 1020
aaagatgtaa atcatatgcg agctaattta atgaatgaac ttaaaaaatt cgataaacaa 1080
atagctcaag gaatatatga tgcggatcat aaaaatccat attatgatac tagtacattt 1140
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-continued

ttatctcatt tttataatcc tgatagagat aatacttatt tgcegggttt tgctaatgeg

aaaataacag gagcaaagta tttcaatcaa tcggtgactg attaccgaga

1200

agggaa 1256

What is claimed is:

1. A method of reconstituting an immune response in a
subject in an antigen-independent manner, the method com-
prising the step of administering a live attenuated recombi-
nant Listeria strain to said subject, wherein said Listeria
strain comprises a mutation or a deletion of a genomic
internalin C (inlC) gene, and wherein said administration
reconstitutes an immune response in the subject in an
antigen-independent manner.

2. The method of claim 1, wherein said Listeria strain
comprises a nucleic acid molecule, wherein said nucleic acid
molecule comprises a first open reading frame encoding a
non-hemolytic LLO protein or immunogenic fragment
thereof, an N-terminal ActA fragment or a truncated ActA,
or a PEST amino acid sequence selected from the group
consisting of SEQ ID NO: 8-19.

3. The method of claim 2, wherein said Listeria over
expresses and secretes said non-hemolytic LLO protein or
immunogenic fragment thereof, said N-terminal ActA frag-
ment or a truncated ActA, or said PEST amino acid sequence
selected from the group consisting of SEQ ID NO: 8-19.

4. The method of claim 1, wherein said recombinant
Listeria further comprises a mutation or a deletion of a
genomic Act A gene, a PlcA gene, PrfA gene or a PlcB gene.

5. The method of claim 2, wherein said nucleic acid
molecule further comprises a second open reading frame
encoding a metabolic enzyme, wherein said metabolic
enzyme complements an endogenous gene that is lacking in
the chromosome of said recombinant Listeria strain.

10

15

20

25

30
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6. The method of claim 5, wherein said metabolic enzyme
encoded by said second open reading frame is an alanine
racemase enzyme or a D-amino acid transferase enzyme.

7. The method of claim 2, wherein said nucleic acid
molecule is integrated into the Listeria genome.

8. The method of claim 2, wherein said nucleic acid
molecule is in a plasmid that is stably maintained in said
recombinant Listeria vaccine strain in the absence of anti-
biotic selection.

9. The method of claim 1, wherein said subject is an adult
human, a child or a non-human mammal.

10. The method of claim 1, wherein said method facili-
tates recovery of immune responses in an antigen-indepen-
dent manner following a cytotoxic treatment in said subject.

11. The method of claim 1, wherein the Listeria strain is
used alone or is combined with an additional adjuvant.

12. The method of claim 11, wherein said additional
adjuvant is a non-nucleic acid adjuvant including aluminum
adjuvant, Freund’s adjuvant, MPL, emulsion, GM-CSF,
QS21, SBAS2, CpG-containing oligonucleotide, a nucleo-
tide molecule encoding an immune-stimulating cytokine,
comprises a bacterial mitogen, or a bacterial toxin.

13. The method of claim 1, wherein said method enables
the treatment of a disease.

14. The method of claim 13, wherein said disease is a
tumor or a cancer, or an infectious disease.

15. The method of claim 14, wherein said method
increases the ratio of CD8+/T regulatory cells in said tumor.
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